首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrastructural aspects ofCyperus iria leaves showing the C4 syndrome and the typical C3 species,Carex siderosticta, in the Cyperaceae family were examined.C. iria exhibited the chlorocyperoid type, showing an unusual Kranz structure with vascular bundles completely surrounded by two bundle sheaths. The cellular components of the inner Kranz bundle sheath cells were similar to those found in the NADP-ME C4 subtype, having centrifugally arranged chloroplasts with greatly reduced grana and numerous starch grains. Their chloroplasts contained convoluted thyla-koids and a weakly-developed peripheral reticulum, although it was extensive mostly in mesophyll cell chloroplasts. The outer mestome bundle sheath layer was sclerenchymatous and generally devoid of organelles, but had unevenly thickened walls. Suberized lamellae were present on its cell walls, and they became polylamellate when traversed by plasmodesmata. Mesophyll cell chloroplasts showed well-stacked grana with small starch grains. InC. siderosticta, vascular bundles were surrounded by the inner mestome sheath and the outer parenchymatous bundle sheath with intercellular spaces. The mestome sheath cells degraded in their early development and remained in a collapsed state, although the suberized lamellae retained polylamellate features. Plastids with a crystalline structure, sometimes membrane-bounded, were found in the epidermal cells. The close interveinal distance was 35–50 μm inC. iria, whereas it was 157–218 μm inC. siderosticta. These ultrastructural characteristics were discussed in relation to their photosynthetic functions.  相似文献   

2.
Phylogenetic analyses of 131 terminals of Paspalum and related genera, based on both plastid and nuclear markers, were performed under maximum parsimony and Bayesian methods. The total evidence analyses generated a hypothesis showing that Paspalum would be monophyletic if Spheneria, Thrasyopsis and Reimarochloa are included within the genus. Paspalum inaequivalve and P. microstachyum, two species of the Inaequivalvia group were related to genus Anthaenantiopsis, excluded from Paspalum, or nested within it by plastid and nuclear markers, respectively. Subgenera Anachyris and Harpostachys were partially recovered as monophyletic assemblages, while subg. Ceresia and Paspalum resolved as polyphyletic. Within subgenus Paspalum, some informal groups were recovered as monophyletic, while others were resolved as paraphyletic or polyphyletic. Phylogenetic relationships among species of Paspalum were partially recovered possibly due to reticulation events among species, autopolyploidization and apomixis; all these processes being common in Paspalum, thus obscuring the infrageneric classification.  相似文献   

3.
The leaf ultrastructure of NADP-malic enzyme type C4 species possessing different anatomical features in the Cyperaceae was examined: types were the Rhynchosporoid type, a normal Kranz type in which mesophyll cells are adjacent to Kranz cells, and Fimbristyloid and Chlorocyperoid types, unusual Kranz types in which nonchlorophyllous mestome sheath intervenes between the two types of green cells. They show structural characteristics basically similar to the NADP-malic enzyme group of C4 grasses, that is, centrifugally located chloroplasts with reduced grana and no increase of mitochondrial frequency in the Kranz cells. However, the Kranz cell chloroplasts of the Fimbristyloid and Chlorocyperoid types exhibit convoluted thylakoid systems and a trend of extensive development of peripheral reticulum, although those of the Rhynchosporoid type do not possess such particular membrane systems. The suberized lamella, probably a barrier for CO2 diffusion, is present in the Kranz cell walls of the Rhynchosporoid type and in the mestome sheath cell walls of the other two types, and tightly surrounds the Kranz cells (sheaths) that are the sites of the decarboxylation of C4 acids. These ultrastructural features are discussed in relation to C4 photosynthetic function.  相似文献   

4.
The genusEleocharis, a blade-less sedge group, has been very recently recorded to include NAD-malic enzyme type C4 species. The ultrastructural features of culms of two C4 representatives in the genus were examined in relation to the C4 acid decarboxylation type. They possessed non-chlorophyllous mestome sheath cells between mesophyll cells and Kranz cells, and were confirmed biochemically to be NAD-malic enzyme type. The oval or lenticular chloroplasts with well-developed grana are scattered in the Kranz cells with abundant large mitochondria, and do not show such centripetal position as is known in the “classical NAD-malic enzyme type”. The suberized lamellae occur in the mestome sheath cells internally surrounding the Kranz sheath and may contribute to maintaining high CO2 concentration in the Kranz cells. These new structural features of the NAD-malic enzyme type found inEleocharis are added to the structural and functional relationships of the C4 types in the Cyperaceae reported previously  相似文献   

5.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

6.
The origin and early development of procambium and associated ground meristem of major and minor veins have been examined in the leaf blades of seven C4 grass species, representing different taxonomic groups and the three recognized biochemical C4 types (NAD-ME, PCK, and NADP-ME). Comparisons were made with the C3 species, Festuca arundinacea. In “double sheath” (XyMS+) species (Panicum effusum, Eleusine coracana, and Sporoboìus elongatus), the procambium of major veins gives rise to xylem, phloem, and a mestome sheath; associated ground meristem differentiates into PCA (“C4 mesophyll”) tissue and the PCR (“Kranz”) sheath. Development in the C3 species parallels this pattern, except that associated ground meristem differentiates into mesophyll and a parenchymatous bundle sheath. In contrast, major vein procambium of “single sheath” (XyMS–) species (Panicum bulbosum, Digitaria brownii, and Cymbopogon procerus) differentiates into xylem, phloem and a PCR sheath; associated ground meristem gives rise to PCA tissue. These observations of major vein development support W. V. Brown's hypothesis that the PCR sheaths of “double sheath” (XyMS+) C4 grasses are homologous with the parenchymatous bundle sheaths of C3 grasses, while in “single sheath” (XyMS–) C4 species they are homologous with the mestome sheath. Although there are some similarities in the development of the major and minor vascular bundle procambium in the C4 species examined, the ontogeny of the smaller minor veins is characterized by a precocious delineation of the PCR sheath layer that may even precede the appearance of the distinctive cytological features of ground meristem and procambium. This contracted development in minor veins appears to be related to their close spacing in mature leaves and to their comparatively late appearance during leaf ontogeny.  相似文献   

7.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

8.
Paspalum is one of the most important genera of the Poaceae family due to its large number of species and diversity. The subgenus Anachyris comprises six species mainly from South America grouped together by sharing rare spikelet characteristics. A genetic analysis using ISSR markers, compared with the morphological and phenotypic variation observed in each one species, was used to establish genetic relationships among 40 accessions with several ploidy levels, belonging to 5 species of the subgenus Anachyris. Fourteen accessions of Paspalum malacophyllum (2x and 4x), 12 of P. simplex (2x, 3x, 4x and 6x), 4 of P. procurrens (2x and 4x), 4 of P. usterii (4x) and 6 of P. volcanensis (4x) were analysed. A total of 227 ISSR loci (98.7% polymorphic) were detected among all accessions, with variable loci number and percentages of polymorphism according to species delimitations. Six main groups were identified by cluster analysis based on Jaccard's genetic distance and UPGMA, four of which matched all the respective accessions of P. simplex, P. procurrens, P. usterii and P. volcanensis, while the other two were consistent with two different groups of accessions of P. malacophyllum, one involving most tetraploid accessions, and the other one grouping together a tetraploid and two diploid accessions. The distinctive morphological characteristics and the separate clustering of these tetraploid and diploid cytotypes suggest to consider a new multiploid species complex inside the subgenus Anachyris. Both cytotypes of P. procurrens, and the four co-specific cytotypes of P. simplex consistently clustered together forming two specific groups for the two multiploid taxons. This is in agreement with the existence of high phenotypic similarities between diploid and tetraploid cytotypes of P. procurrens, and among diploid, triploid, tetraploid and hexaploid cytotypes of P. simplex. Since the polyploid cytotypes of these species are reproduced by apomixis, the specific genetic clustering by ISSR markers and morphological and cytological results support the hypothesis that the two multiploid species were originated by autopolyploidy. Our results confirm previous studies suggesting a monophyletic origin for the subgenus Anachyris and are concordant with previous data regarding genomic homologies and phylogenetic analyses in the genus.  相似文献   

9.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

10.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

11.
Rhynchospora rubra was found to have a low CO2 compensation point, high δ13C value, Kranz leaf anatomy, starch present in the bundle sheath cells and narrow interveinal distance. These observations suggest thatR. rubra is a C4 plant. A further anatomical survey revealed seven otherRhynchospora species presumably having the C4 photosynthetic pathway. In the family Cypraceae C4 plants therefore occur in the tribe Rhynchosporeae as well as in the Scirpeae and Cypereae. The C4 species ofRhynchospora have a normal Kranz type of leaf anatomy, although the C4 species ofCyperus andFimbristylis presently known have an abnormal one in which the mestome sheath without chloroplasts is interposed between the Kranz tissue and the rest of the chlorenchyma. Thus inRhynchospora the Kranz tissue is in direct contact with the rest of the chlorenchyma, and it is suggested that the Kranz tissue may be homologous with the mestome sheath.  相似文献   

12.
Wakayama M  Ohnishi J  Ueno O 《Planta》2006,223(6):1243-1255
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades—namely, the leaf sheath, stem, scale leaf, and constituents of the spike—also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.  相似文献   

13.
14.
Abstract: Continuous biomass removal by grazing usually changes the resource allocation pattern of plants. These changes often increase resistance to tissue removal and produce individuals with different morphometric traits, such as root to shoot or blade to sheath ratios. Shifts in morphometric traits, in turn, may alter nutrient cycling through changes in the average quality of litter that decomposes in soil. Previous work has shown that Paspalum dilatatum, a native grass from the Pampas grasslands, which inhabits a vast area and supports a wide range of grazing conditions, increases its blade to sheath ratio under continuous grazing with respect to ungrazed conditions. Here, we explored the consequences of these changes apparently associated with grazing regime on litter quality and nutrient dynamics during litter breakdown in soil. We separately analysed litter quality of blades and sheaths of P. dilatatum and determined under controlled conditions their decomposition and nutrient release kinetics over a maximum period of 1 year. We also studied the mineral nitrogen contents in soil amended with each litter type. Blade quality was significantly higher than sheath quality, nitrogen concentrations of blades and sheaths were approximately 1% and 0.6%, respectively, and lignin to nitrogen ratios were approximately 5 and 11 for blades and sheaths, respectively. Phosphorus concentration, however, was similar in both litter types. Blades decomposed 10% faster than sheaths, released 20% more nitrogen and released 15% more phosphorus than sheaths during the last half of the incubation period. During the first 3 months, the soil nitrogen content of litter‐amended incubations indicated immobilization with respect to non‐amended control; however, later blade incubations mineralized nitrogen, whereas sheath incubations continued immobilizing it. Results revealed that grazing potentially accelerates nutrient cycling during decomposition by increasing the blade to sheath ratio of P. dilatatum individuals, and suggest that this may be an important mechanism underlying grazing impact on nutrient cycling.  相似文献   

15.
Although the unique tissue required for C4 photosynthesis in nonsucculent plants is often described as being modified leaf parenchyma sheath, which is positioned meaningfully between the mesophyll externally and the vascular tissues internally, the actual range of locations and known associations make that concept untenable. In origin the Kranz tissue develops from procambium as well as ground parenchyma. It is found in stems as well as leaves. In position Kranz tissue can lie in the parenchyma sheath, in the mestome sheath, isolated in the mesophyll, peripherally in some thick leaves, or within the veins. It can be associated with mesophyll only, mesophyll and colorless parenchyma, mesophyll and sclerenchyma, other Kranz tissue and vascular tissues, mesophyll and mestome sheath, mesophyll and phloem, mesophyll and xylem, epidermis, and, finally, mestome sheath and xylem and phloem. The use of the term Kranz is expounded.  相似文献   

16.
17.
Summary Leaf blades of 42 grasses (Poaceae) have been examined ultrastructurally for the occurrence of a suberized lamella in walls of parenchymatous bundle sheaths and PCR (= Kranz) sheaths in both large and small vascular bundles. The sample includes species from a range of major grass taxa, and represents all photosynthetic types found in the grasses. Three grasses with unusual C4 leaf anatomy were also included:Alloteropsis semialata, Aristida biglandulosa, Arundinella nepalensis. The presence of a suberized lamella in PCR cell walls was perfectly correlated with photosynthetic type. All PEP-carboxykinase type and NADP-malic enzyme type C4 species examined possessed a suberized lamella in outer tangential and radial walls, but with variable presence in inner tangential walls. PCR cells of bothAlloteropsis semialata andArundinella nepalensis also possessed a suberized lamella. A lamella was totally absent from parenchymatous bundle sheath cells of the C3 species examined (5 spp.) and ofPanicum milioides, a C3-C4 intermediate. It was also absent from PCR cells of NAD-malic enzyme type C4 species (14 spp.) andAristida biglandulosa. The results are discussed in relation to the leakage of CO2 from PCR cells, and to differences between C4 types in 13C values, chloroplast position in PCR cells, and other anatomical characteristics.  相似文献   

18.
李茜  刘增文  米彩红 《生态学报》2012,32(19):6067-6075
通过采集树木枯落叶与土壤进行室内混合分解培养试验,研究了黄土高原常见的樟子松和落叶松与其他树种枯落叶混合分解对土壤性质的影响及存在的相互作用,从而为不同树木种间关系的探索和该地区人工纯林的混交改造提供科学指导。结果表明:12种枯落叶单一分解均明显提高了土壤脲酶(54%—110%)、脱氢酶(85%—288%)和磷酸酶(81%—301%)活性以及有机质(29%—55%)和碱解N(12%—49%)含量,但对土壤速效P含量和CEC的影响存在较大差异。综合而言,樟子松分别与白桦、刺槐、白榆、柠条和落叶松枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与小叶杨、沙棘、紫穗槐、侧柏和辽东栎枯落叶混合分解在对土壤性质的影响中存在相互抑制作用;落叶松分别与刺槐、白桦、小叶杨和紫穗槐枯落叶混合分解在对土壤性质的影响中存在相互促进作用,而分别与柠条、侧柏、辽东栎、沙棘、油松和白榆枯落叶混合分解在对土壤性质的影响中存在相互抑制作用。  相似文献   

19.
Summary We investigated the histochemistry and ultrastructure of the cell walls of mestome sheaths and parenchymatous bundle sheaths of ten species of grasses. The species surveyed included representatives from all the major photosynthetic types: C3-Bromus tectorum, Phalaris arundinacea; C4/NAD-ME-Eragrostis cilianensis, Panicum capillare; C4/NAD-ME/PCK-Bouteloua curtipendula; C4/PCK-Chloris gayana, Sporobolus elongatus; C4/NADP-ME-Echinochloa crus-galli, Setaria glauca, Themeda triandra. All vein orders (designated here as major, minor and transverse) from mature leaves of each species were tested histochemically for lipids and phenols, and the majority of species were also examined with the electron microscope. A suberized lamella was detected ultrastructurally in at least some walls of major vein bundle sheath cells of all species examined. These lamellae were also present in some cells associated with the minor veins of the C3 species and in the minor and transverse veins of the C4/NADP-ME species. Histochemical tests for lipids and phenols consistently failed to differentiate this layer. Based on these tests, none of the vein orders in any species showed evidence of a Casparian band. In all suberized bundle sheaths, the compound middle lamella between cells with suberin lamellae is modified by the presence of phenols. These did not, however, confer resistance to acid digestion to the cell layer, in contrast to cell layers with Casparian bands. Therefore, although the mestome sheath has some features in common with the root endodermis (i.e. cells with a suberized lamella and thick, cellulosic walls which may be further modified), we could find no substantive anatomical or ultrastructural evidence for the presence of a Casparian band in any of the grass leaves investigated. The significance of these observations is discussed in the context of apoplastic permeability of these walls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号