首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. It has been suggested that palm fruits are keystone resources for frugivores in tropical rain forests, but no study has addressed this hypothesis. The effects of the harvesting of a dominant palm tree Euterpe edulis were studied over 2 years in the Atlantic forest of Brazil.
2. The abundance of 15 large frugivorous birds from five families (Ramphastidae, Cracidae, Cotingidae, Trogonidae and Psittacidae) was estimated using unlimited distance point counts (IPA) and encounter rate.
3. Although all species studied are known to eat Euterpe fruits, only one Cotingidae ( Carpornis melanocephalus ) and one Ramphastidae ( Ramphastos vitellinus ) were negatively affected by the removal of this palm from the forest.
4. This result indicates that Euterpe palms in the lowland forests do not fulfil the role of keystone species, because they bear ripe fruits during the period of peak overall fruit availability and because birds may switch their diets to other food sources when palms are removed.
5. Palm-heart exploitation is not recommended in small forest areas, nor in areas where E. edulis bears fruit during the period of overall fruit scarcity. Only long-term monitoring can evaluate the responses of the bird and mammal communities to the harvesting process.  相似文献   

2.
The feeding and ranging behaviors of mangabeys,Cercocebus torquatus torquatus Kerr (1792), were studied over two periods for a total of 15 months in south-western Cameroon between 1983 and 1986. The mangabeys showed stable food acquisition, mainly of fruits produced by canopy trees. Their ranging area, especially the core area, shifted seasonally. The fruiting trees revealed a clumped distribution in space, and provided a fluctuating food resource for frugivores, including the mangabeys. The core area of the mangabeys possibly shifted due to the spatial distribution of fruiting trees, their highest ranking food items. Mangabeys are well adapted to such a fluctuating food distribution, regulating their ranging behaviors to ensure stable food acquisition.  相似文献   

3.
Seed dispersal by frugivores in tropical rain forests is important for maintaining viable tree populations. Over the years, vertebrate assemblages in tropical forests have been altered by anthropogenic disturbances, leading to concerns about the ability of remnant vertebrates to substitute for the lost or declining vertebrate populations. We compared vertebrate composition and frugivore visitation rates as an indirect measure of rate of seed dispersal in three tropical rain forests in Uganda, namely Mabira, Budongo and Kibale Forests. Mabira is highly disturbed, Kibale is little and Budongo is intermediate. The aim was to determine whether vertebrate assemblages in differentially disturbed forests had comparable abilities to disperse seeds and whether tree species were equally vulnerable to loss of seed dispersers. Assemblages of forest generalist species were similar in all forests, but specialists were less abundant in the heavily disturbed forest. Remnant frugivores in the heavily disturbed forest were mainly small-bodied species that spat seeds beneath fruiting trees compared to large-bodied species observed in the less disturbed forests that ingested and carried away the seeds. We postulate that the quantity of seeds dispersed in heavily disturbed forests is much reduced due to low visitation rates of frugivores and the absence of large frugivores that consume large quantities of fruit. The quality of seed dispersal is affected as well by the distance over which seeds are moved. Assessment of vulnerability of trees shows no evidence for disperser substitution for trees producing large fruits. Fruit trees with low nutritional contents and digestibility were least visited in frugivore-impoverished forests. The loss of large specialist frugivores is likely to affect recruitment of many trees, especially of species that cannot establish beneath adult conspecifics.  相似文献   

4.
Individual trees of the food species of monkeys were identified by placing plastic tapes with an identification number on them in the tropical rain forest of Cameroon, West Africa. In order to determine the use of the feeding trees by monkeys, the ground under each of the trees was checked at least once a week to see if there were any fallen fruits or traces of feeding on fruits. Some fruit species were not fed on by either monkeys or large arboreal squirrels. Among the food species common to both the monkeys and large squirrels, a larger proportion in terms of quantity in each species was mainly eaten by the monkeys except in the case of super-abundantly fruit producing species. The monkeys and large arboreal squirrels were well segregated in their diets. Larger proportions (more than 85% for most of the monkeys' major foods) of fruits of larger sizes were made to fall on the ground by the monkeys and squirrels. The monkeys displayed a tendency to visit fruiting trees rather evenly (even rate of visit = even frequency of visit/duration of fruiting) not ignoring any area of the home range, although a small difference in this tendency was observed between the two study periods, one an abundant season and the other a poor fruiting season. On average, one associated polyspecific group of monkeys encountered only 14 fruiting trees per day. On the other hand, fruits were available all around the year, as the fruiting periods of different tree species were widely distributed around the year, or the fruiting periods of some species were very long. Although the monkeys are able to depend heavily on fruits, the quantity of fruits is not so great. The population size of monkeys is well balanced with the available food supply in the tropical rain forest of West Africa.  相似文献   

5.
Ecological restoration typically focuses on promoting vegetation recovery in degraded habitat or reintroducing endangered animals to enhance their regional or global persistence. Here, we argue that attention should also be devoted to vertebrate reintroductions in overhunted but floristically intact tropical forests in order to prevent insidious regime shifts in these systems. Growing evidence suggests that tropical forests deprived of seed‐dispersing animals exhibit replacement of fleshy fruiting trees by species with abiotic seed dispersal. Left unchecked, this process could eventually render the forest uninhabitable by frugivores through reduced density and diversity of their food plants. In tropical areas where hunting can be controlled, we contend that frugivore reintroduction, regulation of wild fruit harvest by humans, and outplanting of native fruiting trees should be deployed as management tools long before the systems are in need of traditional habitat restoration.  相似文献   

6.
The availability of fruits is critical for tropical forests, where the majority of plant species rely upon animal vectors for seed dispersal. However, we do not know how fruit production is temporally distributed over species and families. Two plant families are particularly important in floristic inventories of Atlantic rain forests: Arecaceae, a few species of which are highly abundant; and Myrtaceae, which is abundant and displays outstanding species diversity. In this context, we asked whether hyperdominance occurs in fruit production in the Atlantic rain forest, and whether it occurs in the abundant species of Arecaceae and Myrtaceae. We investigated whether the temporal fruit production patterns differ between Myrtaceae, Arecaceae, and the plant community as a whole. We also applied a functional dispersion index to assess the temporal fruit diversity over a 2‐yr period, with regard to morphological and phenological traits. We found that the phenomenon of hyperdominance occurs in fruit production: five species accounted for more than half of the pulp biomass. Arecaceae fruit biomass peaked at the end of wet season, overlapping with the community peak; whereas Myrtaceae species fruited throughout the year and were an important resource during periods of food scarcity. Myrtaceae filled more of the fruit morphospace over time because their fruits exhibit a large range of morphologies and phenological strategies. Our results demonstrated the importance of combining phenology and fruit morphology in the evaluation of resource availability, which revealed periods of high fruit diversity that could support a range of frugivore sizes and maintain overall ecosystem functionality.  相似文献   

7.
In tropical rain forests of Central America, the canopy tree Dipteryx panamensis (Papilionaceae) fruits when overall fruit biomass is low for mammals. Flying and arboreal consumers feed on D. panamensis and drop seeds under the parent or disperse them farther away. Seeds on the ground attract many vertebrate seed-eaters, some of them potential secondary seed dispersers. The fate of seeds artificially distributed to simulate bat dispersal was studied in relation to fruitfall periodicity and the visiting frequency of diurnal rodents at Barro Colorado Island (BCI), Panama. The frequency of visits by agoutis is very high at the beginning of fruitfall, but in the area close (<50 m) to fruiting trees (Dipteryx-rich area) it declines throughout fruiting, whereas it remains unchanged farther (>50 m) away (Dipteryx-poor and Gustavia-rich area). Squirrels were usually observed in the Dipteryx-rich area. Along with intense post-dispersal seed predation by rodents in the Dipteryx-rich area, a significant proportion of seeds were cached by rodents in the Dipteryx-poor area. Post-dispersal seed predation rate was inversely related to hoarding rate. A significantly greater proportion of seeds was cached in March, especially more than 100 m from the nearest fruiting tree. This correlates with the mid-fruiting period, i.e. during the height of D. panamensis fruiting, when rodents seem to be temporarily satiated with the food supply at parent trees. Hoarding remained high toward April, i.e. late in the fruiting season of D. panamensis. Low survival of scatterhoarded seeds suggests that the alternative food supply over the animal's home-ranges in May–June 1990 was too low to promote survival of cached seeds. Seedlings are assumed to establish in the less-used area of the rodents' home-range when overall food supply is sufficient to satiate post-dispersal predators.  相似文献   

8.
Specialized seed predators are uncommon in arboreal vertebrate assemblages, and the hypothesis that consuming seeds of immature fruits – which may be available for relatively long periods compared to mature fruit – could reduce seasonal food scarcity experienced by generalist frugivores remains largely untested. To test this hypothesis, we examined the diet and feeding ecology of bald‐faced saki monkeys Pithecia irrorata in a largely intact forest mosaic of southeastern Peru based on systematic monitoring of five habituated groups over a three‐year period and compared the relative availability of ripe and unripe fruits in their diet. Plant phenology data from individual tree crowns showed that, compared to ripe fruits, immature fruits were available in more tree species, in greater quantities, and for longer periods. Despite pronounced community‐wide seasonal changes in fruit production at our study area, feeding patterns of bald‐faced saki remained largely invariant: fruits comprised approximately 95% of the species’ monthly diet, with seeds alone accounting for 75%, with no major monthly dietary shifts. The flexible exploitation by this species of a consistently available food supply for which it faces little competition likely reduces foraging effort and consumption of less desirable foods, even during prolonged periods of overall fruit scarcity. The relative rarity of immature fruit specialists in tropical forests may reflect the fact that processing the hard pericarps and neutralizing the toxicities of immature seeds present substantial evolutionary hurdles that few arboreal vertebrate species have overcome.  相似文献   

9.
The phenology of principal fruits consumed by the endangered Great Pied Hornbill (Buceros bicornis) was monitored for two years in a wet forest habitat in southern India. Lipid–rich fruits, produced by several interior forest trees mainly of the family Lauraceae, were highly seasonal in their availability, and their production in the dry, hot season coincided with the breeding of the hornbill. Sugary fruits, produced mainly by several species of Ficus, were available year–round due to aseasonal fruiting patterns. Because Ficus fruited even at times of low fruit resource availability, and was heavily utilized by hornbills and other frugivores, it played a keystone role in the maintenance of the avian frugivore community. Overall fruit production was scarce between July and January during the southwest and northeast monsoon seasons. Vitex altissima produced berries abundantly during much of this time (September–December) and thus was another important fruit resource for avian frugivores. To safeguard the fruit resource base for the Great Pied Hornbill, we recommend: (1) The protection of Ficus and Vitex trees from overexploitation, and (2) the conservation of forest integrity to maintain compositions and densities of the lipid–rich fruit tree species utilized by the hornbill.  相似文献   

10.
Complex frugivory networks are common in heterogeneous environments, but how the structure of those networks varies due to seasonality and other environmental factors remains unclear. For example, seasonal variation in rainfall can influence fruit production and diaspore characteristics, which could alter the quantity and quality of resources available to different animals in the network and, hence, network structure. We investigated how a frugivory network varied seasonally in Brazilian savanna (Cerrado), where there are well-defined dry and wet seasons and fructification mainly during the rainy season for most tree species. We recorded fruit consumption by animals during the dry and wet seasons in two different gallery forests and used these data to test the hypotheses that connectance, links per species and nestedness would be higher in the dry season than rainy season due to low available food in the former that would be consumed by various species of frugivores. Concomitantly, we also measured seed width and lipid content from diaspores of the fruiting trees to determine if these characteristics influenced interaction properties between fruiting trees and frugivores. Among the measured network parameters, connectance, links per species and specialization varied between seasons in one site but not in the other, indicating that seasonal variation in networks is not necessarily consistent over time or space. The number of tree species with small diaspores with high lipid content differed between seasons, and those characteristics were key factors increasing the interaction parameter of fruiting trees. We suggest that network stability between seasons may be related to local frugivore diversity, resource availability, and fruit quality.  相似文献   

11.
Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant–frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species.  相似文献   

12.
Wildfires are an increasing threat to tropical rainforests, yet little is known about their effects on fruit production and forest wildlife. We examined the effects of both single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian terra firme forest for 3 years following a large fire event. The estimated mortality of 42 and 74% of stems ≥10 cm in once- and twice-burnt forest led to a substantial loss of fruiting tree basal area (29 and 62% were lost in once- and twice-burnt forest, respectively) and crown coverage of fruiting woody lianas (89 and 97% were lost in once- and twice-burnt forest, respectively). Some important tree families producing fleshy fruits were less abundant than expected in once- and twice-burnt forest, suggesting that tree mortality was non-random in terms of species composition. Asynchronous fruit production was affected, and burnt forest transects sustained a much lower fruiting basal area, and fewer fruiting species during the dry season period of fruit scarcity. The number of fruiting trees in once- and twice-burnt forest was higher than the number predicted from actual levels of tree mortality recorded in each fire disturbance treatment, suggesting some surviving trees which may have benefited from higher irradiance levels and lower competition for resources. Many large frugivores and other vertebrate species declined in response to single fires, and most primary forest specialists were extirpated from twice-burnt forest, which sustained a higher number of species associated with second growth and other disturbed habitats.  相似文献   

13.
Primates are unique among eutherian mammals for possessing three types of retinal cone. Curiously, catarrhines, platyrrhines, and strepsirhines share this anatomy to different extents, and no hypothesis has hitherto accounted for this variability. Here we propose that the historical biogeography of figs and arborescent palms accounts for the global variation in primate color vision. Specifically, we suggest that primates invaded Paleogene forests characterized by figs and palms, the fruits of which played a keystone function. Primates not only relied on such resources, but also provided high-quality seed dispersal. In turn, figs and palms lost or simply did not evolve conspicuous coloration, as this conferred little advantage for attracting mammals. We suggest that the abundance and coloration of figs and palms offered a selective advantage to foraging groups with mixed capabilities for chromatic distinction. Climatic cooling at the end of the Eocene and into the Neogene resulted in widespread regional extinction or decimation of palms and (probably) figs. In regions where figs and palms became scarce, we suggest primates evolved routine trichromatic vision in order to exploit proteinaceous young leaves as a replacement resource. A survey of the hue and biogeography of extant figs and palms provides some empirical support. Where these resources are infrequent, primates are routinely trichromatic and consume young leaves during seasonal periods of fruit dearth. These results imply a link between the differential evolution of primate color vision and climatic changes during the Eocene-Oligocene transition.  相似文献   

14.
Tropical rainforests show seasonal fluctuations in the abundance of fruits resulting in periods of resource scarcity for frugivores. We examined the response of an obligate frugivore, the lion‐tailed macaque (LTM) (Macaca silenus), to a period of fruit scarcity in a rainforest in the Western Ghats, India. We estimated the abundance and distribution of fruit resources from food tree densities obtained from 348 point centered quadrats, and fruit availability from phenological monitoring of 195 trees of 15 reported major food species. Macronutrient content was estimated for fruits of 15 major food species. We estimated time spent feeding on different food items from 1,853 individual scans spanning 120 hr of observation of one habituated study group. There was a distinct period of fruit scarcity during the drier months of February to mid‐March (Period 1) compared with late March and April (Period 2), separated by summer showers. Fruits available in Period 1 had lower soluble carbohydrate and lipid content and overall caloric value compared with Period 2. During the lean period, the LTM fed more on fruits of Drypetes wightii, which had the highest carbohydrate content, than on nectar of Palaquium ellipticum or Ficus spp., which had low carbohydrate content. During this period, the resource availability in a location significantly influenced the occurrence of feeding there. In Period 2, the group fed most on the seeds of Cullenia exarillata, the most abundant tree in the home‐range and with the highest content of soluble carbohydrates. During this period, the abundance of food trees in fruit in a location did not seem to influence the occurrence of feeding. Low abundance, stochastic fruiting and, low quality might make Ficus spp. a poor fallback option for the LTM. Am. J. Primatol. 73:1250–1260, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
1.  Despite a long history of research on the influence of fruit availability on the population density of large-bodied vertebrate frugivores, operational understanding of the factors regulating density in these taxa remains elusive. We propose that fruit resources can be distinguished from one another on the basis of their functional role for the animals in question, and that such a classification system can aid in identifying the most influential determinants of frugivore density.
2.  We compared the availability of several resource classes between two sites in Kibale National Park, Uganda separated by only 12 km yet differing threefold in density of chimpanzees ( Pan troglodytes ).
3.  We categorized plant species used for fruit by chimpanzees according to their availability relative to habitat-wide fruit productivity, and by their tendency towards inter-individual fruiting synchrony. We predicted that the site of high chimpanzee density would support a higher density of food plant species tending to produce crops during periods of high habitat-wide productivity [high fruit abundance (HFA foods)] and of those tending to fruit synchronously among individuals during times of low habitat-wide availability (sLFA foods). The first food class should provide chimpanzees with a high nutrient density (and thus promote population growth), whereas the second should provide stable subsistence during lean periods and thus a temporally consistent resource base.
4.  Counter to our prediction, only sLFA resources were more abundant at the site of high chimpanzee density than at the site of low density. We suggest that sLFA resources are most important in influencing density of large-bodied frugivores.  相似文献   

16.
Adjacent floodplain and upland tropical forests experience the same temperature and precipitation regimes, but differ substantially in plant species composition and biotic interactions because of extensive flooding. We hypothesize that flooded forests filter fruiting traits linked to seed dispersal by water and fishes, such that selection by water and fish led to (1) trees that synchronize the timing of fruiting with annual floods, and (2) the evolution of fleshy tissues on fruits to improve buoyancy and increase fruit consumption rates by fish. To test this hypothesis, we compared plant communities in seasonally flooded forests and adjacent upland forest in terms of fruiting phenology, the frequency of trees bearing fleshy fruit, and the role of fleshy tissues in buoyancy and seed viability. Beta‐diversity in this system is high, with significant differences in species composition across habitats. As predicted, the production of ripe fleshy fruits was significantly greater in flooded than upland forests during the flood season. Furthermore, we found that trees with fleshy fruit were significantly more abundant in flooded forests even though species richness of fleshy fruit‐bearing trees was proportionally similar in flooded and upland forests. Additionally, fleshy pulp increased buoyancy. Likewise, time afloat decreased for denser fruit and those with high seed to pulp ratios. In concert, these results suggest that fleshy fruits in Neotropical floodplain forests facilitated hydrochory and ichthyochory. Once established, water and fish became important agents of selection on fruiting traits.  相似文献   

17.
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17–28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).  相似文献   

18.
To test the hypothesis that primate populations are limited by food resources, we studied the feeding ecology of three cercopithecines and one colobine in a rain forest in central Gabon. Simultaneously, we monitored the fruiting phenology of trees and estimated the biomass of the monkey community. The Makandé Forest is dominated by Caesalpiniaceae and characterized by a lack of secondary vegetation and of trees species producing fleshy fruits. Fruit production was irregular intra- and interannually. Fruiting peaks of dry fruits (mainly Caesalpiniaceae) and of fleshy fruits occurred at the same period. However, interseasonal and interannual variability was greater in Caesalpiniaceae than in other families. As a result, the Makandé forest is subject to bottlenecks when food is scarce. On an annual basis, seeds (primarily Caesalpiniaceae) dominated the diet of all monkeys. On a seasonal basis, cercopithecines preferentially consumed fleshy fruits as long as they were available, whereas colobines increased consumption of young leaves when seed availability declined. The consumption of mature leaves was low. The monkey community biomass (ca. 204 kg/km2) is one of the lowest in Central Africa. We suggest that both cercopithecine and colobine populations are limited as a result of the combined effect of the dominance of Caesalpiniaceae, which provide dry fruits according to a mast-fruiting pattern and mature leaves of low quality, and the lack of seral successional stages, which provide fleshy fruit on a more regular pattern and leaves of better quality. During the period of food scarcity, cercopithecines should suffer from the low availability of fleshy fruit, which are their favorite food. At the same period, colobines should be limited by the low availability of edible leaves. Similar low primate biomasses are found in forests dominated by Caesalpiniaceae or Lecythidaceae in South America and in Dipterocarpaceae forests in South Asia, which suggests that their biological characteristics, in particular dry fruits and mast fruiting, are unfavorable to monkey populations. Our results confirm that habitat mosaics may support larger populations of primary consumers than homogeneous primary forests can.  相似文献   

19.
Phyllostomid bats are prominent components of mammalian assemblages in the Neotropics. With many species specialized in frugivory, phyllostomids represent major partners of fleshy-fruited plants in the mutualism of seed dispersal. Here we present dietary data from two subtropical rainforests of Argentina, where fruit diversity is low and thus offer unique opportunities to test hypotheses of diet selection originally proposed for species-rich tropical assemblages. Particularly, we tested whether frugivorous phyllostomids exhibit pronounced dietary specialization in core plant taxa where fruit offer is greatly reduced as compared to tropical rainforests. We analyzed dietary overlap and niche breadth of subtropical frugivorous bats on the basis of >1000 dietary records plus >500 samples from a previous study in the region. We show that in the subtropics, frugivores from different genera remain faithful to their respective core plant taxa with few exceptions, rather than shifting toward alternative fruit resources available in the study sites. This supports predictions of specialization, which is confirmed to have a deep historical origin. The response of phyllostomid ensembles to restricted fruit diversity is at the level of species composition: absence of species for which preferred fruits do not occur in the sites. Taken together, these data lend strong support to hypotheses that explain coexistence of frugivorous phyllostomids on the basis of dietary specialization on core plant taxa with chiropterochorous fruits.  相似文献   

20.
Frugivorous species heavily depend on patchy food resources and are believed to track these in space and time, thereby providing an important seed dispersal function that might be critical toward the regeneration of fruiting plants. However, isolation of suitable food patches due to habitat fragmentation or changes in landscape connectivity may hamper food tracking behaviour and adversely affect populations of both frugivores (through starvation) and food plants (through interruption of seed dispersal). We here test whether density fluctuations in four frugivorous Afrotropical bird species were larger and/or matched fluctuations in ripe fruit densities better in study plots embedded in large tracts of indigenous forest than in equally-sized plots embedded in cultivated lands. We compared these results with those of four non-frugivorous species (out-group) which were not expected to track fruit resources. Whereas densities of both frugivores and fruit crops strongly fluctuated in space and time, these fluctuations were not synchronised, nor did the level of synchrony differ in relation to matrix type. For some but not all bird species, lower densities and smaller temporal fluctuations in forest plots surrounded by cultivation may reflect decreased mobility. The observed fluctuations in bird densities most likely reflect exchange with the surrounding landscape matrix, suggesting that small pockets of fruiting trees in farmland may comprise critical food resources for frugivores inhabiting highly fragmented landscapes, apart from increasing connectivity for both bird and seed dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号