首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major quantitative trait loci (QTL) conditioning common bacterial blight (CBB) resistance in common bean (Phaseolus vulgaris L.) lines HR45 and HR67 was derived from XAN159, a resistant line obtained from an interspecific cross between common bean lines and the tepary bean (P. acutifolius L.) line PI319443. This source of CBB resistance is widely used in bean breeding. Several other CBB resistance QTL have been identified but none of them have been physically mapped. Four molecular markers tightly linked to this QTL have been identified suitable for marker assisted selection and physical mapping of the resistance gene. A bacterial artificial chromosome (BAC) library was constructed from high molecular weight DNA of HR45 and is composed of 33,024 clones. The size of individual BAC clone inserts ranges from 30 kb to 280 kb with an average size of 107 kb. The library is estimated to represent approximately sixfold genome coverage. The BAC library was screened as BAC pools using four PCR-based molecular markers. Two to seven BAC clones were identified by each marker. Two clones were found to have both markers PV-tttc001 and STS183. One preliminary contig was assembled based on DNA finger printing of those positive BAC clones. The minimum tiling path of the contig contains 6 BAC clones spanning an estimated size of 750 kb covering the QTL region.  相似文献   

2.
A 10X rainbow trout bacterial artificial chromosome (BAC) library was constructed to aid in the physical and genetic mapping efforts of the rainbow trout genome. The library was derived from the Swanson clonal line (YY male) and consists of 184,704 clones with an average insert size of 137,500 bp (PFGE) or 118,700 bp (DNA fingerprinting). The clones were gridded onto 10 large nylon membranes to produce high-density arrays for screening the library by hybridization. The library was probed with 11 cDNAs from the NCCCWA EST project chosen because of interest in their homology to known gene sequences, seven known genes, and a Y-specific sex marker. Putative positive clones identified by hybridization were re-arrayed and gridded for secondary confirmation. FPC analysis of HindIII and EcoRV DNA fingerprinting was used to estimate the level of redundancy in the library, to construct BAC contigs and to detect duplicated loci in the semi-duplicated rainbow trout genome. A good correlation (R2 = 0.7) was found between the number of hits per probe and the number of contigs that were assembled from the positive BACs. The average number of BACs per contig was 9.6, which is in good agreement with 10X genome coverage of the library. Two-thirds of the loci screened were predicted to be duplicated as the positive BACs for those genes were assembled into two or three different contigs, which suggests that most of the rainbow trout genome is duplicated.  相似文献   

3.
Positional cloning of an insect-resistance quantitative trait locus (QTL) requires the construction of a large-insert genomic DNA library from insect-resistant genotypes. To facilitate cloning of a major defoliating insect-resistance QTL on linkage group M of the soybean genetic map, a bacterial artificial chromosome (BAC) library for PI 229358 was constructed and characterized. The HindIII BAC library contains 55,296 clones with an average insert size 131 kb. This library represents a 6-fold soybean haploid genome equivalents, allowing a 99.8% probability of recovering any specific sequence of interest in soybean. BAC filters were screened with a genomic DNA probe Sat_258sc2 obtained through genome walking from flanking sequences of a simple sequence repeat (SSR) marker, Sat_258, which links to the insect-resistance QTL. Thirteen BAC clones were identified positive for Sat_258sc2, and two of them were confirmed to carry Sat_258. The results suggest that this library is useful in positional cloning of the major insect-resistance QTL, and the approach presented here can be used to screen a BAC library for a SSR marker without requiring the creation of BAC pools.  相似文献   

4.
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.  相似文献   

5.
The jawless fish occupy an important phylogenetic position for understanding the evolution of body plans, the origin of adaptive immunity and genome evolution in chordates. We describe here the construction of a large-insert bacterial artificial chromosome (BAC) library from the inshore hagfish, Eptatretus burgeri. The BAC library contains 93,978 clones with an average insert size of 100 kb and is estimated to represent threefold genome-equivalent coverage. The library was organized in three-dimensional pools to facilitate screening by PCR. We have screened this library by PCR and isolated several BAC clones; the average number of positive clones was compatible with the estimated genome coverage of the library. This BAC library, constructed for the first time from the jawless fish, should serve as a useful resource for the scientific community.  相似文献   

6.
A BAC library of hexaploid wheat was constructed using the spring wheat cultivar Triticum aestivum L. 'Glenlea'. Fresh shoot tissue from 7- to 10-day-old seedlings was used to obtain HMW DNA. The library was constructed using the HindIII site of pIndigoBAC-5 and the BamHI site of pIndigoBAC-5 and pECBAC1. A total of 12 ligations were used to construct the entire library, which contains over 650 000 clones. Ninety-six percent of the clones had inserts. The insert size ranged from 5 to 189 kb with an average of 79 kb. The entire library was gridded onto 24 high-density filters using a 5 x 5 array. A subset of these membranes was hybridized with two intergenic chloroplast probes and the percentage of clones containing chloroplast DNA (cpDNA) was calculated to be 2.2%. The genome coverage was estimated to be 3.1 x haploid genome equivalents, giving a 95.3% probability of identifying a clone corresponding to any wheat DNA sequence. BAC pools were constructed and screened using markers targeting the Glu-B1 locus (1BL), the hardness loci (5AS, 5BS, 5DS), the leaf rust resistance locus Lr1 (5DL), and the major fusarium head blight QTL locus located on 3BS. These markers were either locus-specific amplicons or microsatellites. A total of 49 BAC clones were identified for 14 markers giving an average of 3.5 clones/marker, thereby corroborating the estimated 3.1x genome coverage. An example using the gene encoding the HMW glutenin Bx7 is illustrated.  相似文献   

7.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

8.
Increasing attention has been focused in recent years on the rat as a model organism for genetic studies, in particular for the investigation of complex traits, but progress has been limited by the lack of availability of large-insert genomic libraries. Here, we report the construction and characterization of an arrayed yeast artificial chromosome (YAC) library for the rat genome containing approximately 40,000 clones in the AB1380 host using the pCGS966 vector. An average size of 736 kb was estimated from 166 randomly chosen clones; thus the library provides 10-fold coverage of the genome, with a 99.99% probability of containing a unique sequence. Eight of 39 YACs analyzed by fluorescencein situhybridization were found to be chimeric, indicating a proportion of about 20–30% of chimeric clones. The library was spotted on high-density filters to allow the identification of YAC clones by hybridization and was pooled using a 3-dimensional scheme for screening by PCR. Among 48 probes used to screen the library, an average of 9.3 positive clones were found, consistent with the calculated 10-fold genomic coverage of the library. This YAC library represents the first large-insert genomic library for the rat. It will be made available to the research community at large as an important new resource for complex genome analysis in this species.  相似文献   

9.
A bovine artificial chromosome (BAC) library of 105 984 clones has been constructed in the vector pBeloBAC11 and organized in 3-dimension pools and high density membranes for screening by PCR and hybridization. The average insert size, determined after analysis of 388 clones, was estimated at 120 kb corresponding to a four genome coverage. Given the fact that a male was used to construct the library, the probability of finding any given autosomal and X or Y locus is respectively 0.98 and 0.86. The library was screened for 164 microsatellite markers and an average of 3.9 superpools was positive for each PCR system. None of the 50 or so BAC clones analysed by FISH was chimeric. This BAC library increases the international genome coverage for cattle to around 28 genome equivalents and extends the coverage of the ruminant genomes available at the Inra resource center to 15 genome equivalents.  相似文献   

10.
Liu W  Liu Z  Hu X  Zhang Y  Yuan J  Zhao R  Li Z  Xu W  Gao Y  Deng X  Li N 《Animal biotechnology》2003,14(2):145-153
A chicken bacterial artificial chromosome (BAC) library consisting of 138,240 clones was constructed in vector pBeloBAC11 with genomic DNA isolated from female white-silk chicken. An average insert size of 118 kb was estimated from 452 randomly isolated clones, which indicate the library to be approximate 13.34-fold genome coverage. For the demonstration of the probability to pick out any unique genes or DNA markers from the library, 8 single-copy genes were screened out and the positive clones were yielded between 2 and 15 with an average of 11.125, in agreement with the estimated high genomic coverage of this library. Positive superpools were obtained for 40 microsatellite markers selected from different regions of chicken genome. The number of positive superpools for each marker varies from 1 to 15 with an average of 9.475.  相似文献   

11.
White clover (Trifolium repens L.) is a forage legume widely used in combination with grass in pastures because of its ability to fix nitrogen. We have constructed a bacterial artificial chromosome (BAC) library of an advanced breeding line of white clover. The library contains 37 248 clones with an average insert size of approximately 85 kb, representing an approximate 3-fold coverage of the white clover genome based on an estimated genome size of 960 Mb. The BAC library was pooled and screened by polymerase chain reaction (PCR) amplification using both white clover microsatellites and PCR-based markers derived from Medicago truncatula, resulting in an average of 6 hits per marker; this supports the estimated 3-fold genome coverage in this allotetraploid species. PCR-based screening of 766 clones with a multiplex set of chloroplast primers showed that only 0.5% of BAC clones contained chloroplast-derived inserts. The library was further evaluated by sequencing both ends of 724 of the clover BACs. These were analysed with respect to their sequence content and their homology to the contents of a range of plant gene, expressed sequence tag, and repeat element databases. Forty-three microsatellites were discovered in the BAC-end sequences (BESs) and investigated as potential genetic markers in white clover. The BESs were also compared with the partially sequenced genome of the model legume M. truncatula with the specific intention of identifying putative comparative-tile BACs, which represent potential regions of microsynteny between the 2 species; 14 such BACs were discovered. The results suggest that a large-scale BAC-end sequencing strategy has the potential to anchor a significant proportion of the genome of white clover onto the gene-space sequence of M. truncatula.  相似文献   

12.
A porcine bacterial artificial chromosome (BAC) library consisting of 103,488 clones has been constructed. The average insert size in the BAC vector was calculated to be 133 kb based on the examination of 189 randomly selected clones, indicating that the library contained 4.4 genome equivalents. The library can be screened by two-step PCR. The first screening step is performed on 22 superpools, each containing 4704 clones (49 x 96 well plates). In the second screening step, 49 plates comprising a superpool are arrayed in a 7 x 7 matrix and 4D-PCR is performed. Screening of the library superpools by PCR for 125 marker sequences selected from different regions of swine genome revealed 123 sequences, indicating that the library is not biased. Subsequent screenings (4D-PCR) were successfully applied for identification of clones containing each marker sequence. This porcine BAC library and the PCR screening system are useful for isolation of genomic DNA fragments containing desired sequences.  相似文献   

13.
A rat PAC library was constructed in the vector pPAC4 from genomic DNA isolated from female Brown Norway rats. This library consists of 215,409 clones arrayed in 614 384-well microtiter plates. An average insert size of 143 kb was estimated from 217 randomly isolated clones, thus representing approximately 10-fold genome coverage. This coverage provides a very high probability that the library contains a unique sequence in genome screening. Tests on randomly selected clones demonstrated that they are very stable, with only 4 of 130 clones showing restriction digest fragment alterations after 80 generations of serial growth. FISH analysis using 70 randomly chosen PACs revealed no significant chimeric clones. About 7% of the clones analyzed contained repetitive sequences related to centromeric regions that hybridized to some but not all centromeres. DNA plate pools and superpools were made, and high-density filters each containing an array of 8 plates in duplicate were prepared. Library screening on these superpools and appropriate filters with 10 single-locus rat markers revealed an average of 8 positive clones, in agreement with the estimated high genomic coverage of this library and representation of the rat genome. This library provides a new resource for rat genome analysis, in particular the identification of genes involved in models of multifactorial disease. The library and high-density filters are currently available to the scientific community.  相似文献   

14.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

15.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

16.
P Ling  X M Chen 《Génome》2005,48(6):1028-1036
A hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome (BAC) library was constructed for cloning Yr5 and other genes conferring resistance to stripe rust (Puccinia striiformis f. sp. tritici). Intact nuclei from a Yr5 near-isogenic line were used to isolate high molecular weight DNA, which was partially cleaved with HindIII and cloned into pECBAC1 and pIndigoBAC-5 vectors. The wheat BAC library consisted of 422,400 clones arrayed in 1100 micro-titer plates (each plate with 384 wells). Random sampling of 300 BAC clones indicated an average insert size of 140 kb, with a size range from 25 to 365 kb. Ninety percent of the clones in the library had an insert size greater than 100 kb and fewer than 5% of the clones did not contain inserts. Based on an estimated genome size of 15,966 Mb for hexaploid wheat, the BAC library was estimated to have a total coverage of 3.58x wheat genome equivalents, giving approximately 96% probability of identifying a clone representing any given wheat DNA sequence. Twelve BAC clones containing an Yr5 locus-specific marker (Yr5STS7/8) were successfully selected by PCR screening of 3-dimensional BAC pools. The results demonstrated that the T. aestivum BAC library is a valuable genomic resource for positional cloning of Yr5. The library also should be useful in cloning other genes for stripe rust resistance and other traits of interest in hexaploid wheat.  相似文献   

17.
Rice is an important crop and a model system for monocot genomics, and is a target for whole genome sequencing by the International Rice Genome Sequencing Project (IRGSP). The IRGSP is using a clone by clone approach to sequence rice based on minimum tiles of BAC or PAC clones. For chromosomes 10 and 3 we are using an integrated physical map based on two fingerprinted and end-sequenced BAC libraries to identifying a minimum tiling path of clones. In this study we constructed and tested two rice genomic libraries with an average insert size of 10 kb (10-kb library) to support the gap closure and finishing phases of the rice genome sequencing project. The HaeIII library contains 166,752 clones covering approximately 4.6x rice genome equivalents with an average insert size of 10.5 kb. The Sau3AI library contains 138,960 clones covering 4.2x genome equivalents with an average insert size of 11.6 kb. Both libraries were gridded in duplicate onto 11 high-density filters in a 5 x 5 pattern to facilitate screening by hybridization. The libraries contain an unbiased coverage of the rice genome with less than 5% contamination by clones containing organelle DNA or no insert. An efficient method was developed, consisting of pooled overgo hybridization, the selection of 10-kb gap spanning clones using end sequences, transposon sequencing and utilization of in silico draft sequence, to close relatively small gaps between sequenced BAC clones. Using this method we were able to close a majority of the gaps (up to approximately 50 kb) identified during the finishing phase of chromosome-10 sequencing. This method represents a useful way to close clone gaps and thus to complete the entire rice genome.  相似文献   

18.
A bacterial artificial chromosome (BAC) library containing a large genomlc DNA insert is an important tool for genome physical mapping, map-based cloning, and genome sequencing. To Isolate genes via a map-based cloning strategy and to perform physical mapping of the cotton genome, a high-quality BAC library containing large cotton DNA Inserts Is needed. We have developed a BAC library of the restoring line 0-613-2R for Isolating the fertility restorer (Rf1) gene and genomic research in cotton (Gossypium hirsutum L.). The BAC library contains 97 825 clones stored In 255 pieces of a 384-well mlcrotiter plate. Random samples of BACs digested with the Notl enzyme Indicated that the average Insert size Is approximately 130 kb, with a range of 80-275 kb, and 95.7% of the BAC clones in the library have an average insert size larger than 100 kb. Based on a cotton genome size of 2 250 Mb, library coverage is 5.7 × haploid genome equivalents. Four clones were selected randomly from the library to determine the stability of the BAC clones. There were no different fingerprints for 0 and 100 generations of each clone digested with Notl and Hlndiii enzymes. Thus, the atabiiity of a single BAC clone can be sustained at iesat for 100 generations. Eight simple sequence repeat (SSR) markers flanking the Rf; gene were chosen to screen the BAC library by pool using PCR method and 25 positive clones were identified with 3.1 positive clones per SSR marker.  相似文献   

19.
Kim CG  Fujiyama A  Saitou N 《Genomics》2003,82(5):571-574
A gorilla fosmid library of 261,120 independent clones was constructed and characterized. The fosmid vector is similar to the cosmid in average insert size of ca. 40 kb but contains the F factor for replication, and it is more resistant to recombination. This clone library represents about 3.7 times coverage of the gorilla genome. A simple screening system by PCR was established, and we successfully found 9 clones that cover the entire Hox A gene cluster of the gorilla genome. This gorilla fosmid DNA library is a useful resource for comparative genomics of human and apes.  相似文献   

20.
A goldfish (Carassius auratus auratus) bacterial artificial chromosome genomic library (BAC library) was constructed from one aquarium-bred male specimen (tetraploid, 4n=100, genome size=3.52 pg/cell). The library consists of 128,352 positive clones with an average insert size of 150.4 kb, covering the genome 11-fold. All clones were spotted onto nylon filters and thus are available for screening of genomic regions of interest, such as candidate genes, gene families, or large-sized syntenic DNA regions of cyprinid species. Preliminary screens with two genes were conducted with hybridizing probes to the genes RAG1 and lgi1. RAG1 is a single-copy gene in zebrafish and is duplicated in C. a. auratus. We found a very close correlation between the number of positive BAC clones and the expected library coverage. Two copies of lgi1 were found in zebrafish. We have detected four different copies in C. a. auratus, not in the expected abundance, which indicates some variation in the coverage of the BAC library. The preliminary screens indicate that many duplicated genes that resulted from the ancient fish-specific genome duplication persist in the tetraploid goldfish genome. Hence, the BAC library will provide a useful resource for the future work on comparative genomics, polyploidy, diploidization, and evolutionary genomics in fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号