首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.  相似文献   

2.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

3.
Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer. The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by the roots of G. maxima, disappeared in late summer. Numbers and activities of the nitrifying bacteria were positively correlated, and a positive relationship with denitrification activities also was found. To assess possible adaptations of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats, a comparison was made between the freshwater lake sediment and three soils differing in oxicity profiles. Oxygen kinetics and tolerance to anoxia of the ammonia-oxidizing communities from these habitats were determined. The apparent K(infm) values for oxygen of the ammonia-oxidizing community in the lake sediment were in the range of 5 to 15 (mu)M, which was substantially lower than the range of K(infm) values for oxygen of the ammonia-oxidizing community from a permanently oxic dune location. Upon anoxic incubation, the ammonia-oxidizing communities of dune, chalk grassland, and calcareous grassland soils lost 99, 95, and 92% of their initial nitrifying capacity, respectively. In contrast, the ammonia-oxidizing community in the lake sediment started to nitrify within 1 h upon exposure to oxygen at the level of the initial capacity. It is argued that the conservation of the nitrifying capacity during anoxic periods and the ability to react instantaneously to the presence of oxygen are important traits of nitrifiers in fluctuating oxic-anoxic environments such as the root zone of aerenchymatous plant species.  相似文献   

4.
Chlorimuron-ethyl is a type of long-residual herbicide applied widely to soybean fields in China, but little information is available about the long-term impact of this herbicide on soil nitrogen-transforming microbial communities. Soil samples (0–20 cm) were collected from three treatments (no, 5-year and 10-year application of chlorimuron-ethyl) in a continuously cropped soybean field. Plate count (CFU), most probable number (MPN) count, and clone library analyses were conducted to investigate the abundance and composition of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacterial communities, and a chlorate inhibition method was adopted to measure the soil nitrification potential. Long-term chlorimuron-ethyl application reduced the abundance of soil culturable nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria. Moreover, chlorimuron-ethyl decreased the diversity of nitrogen-fixing and ammonia-oxidizing bacteria but promoted that of denitrifying bacteria. Chlorimuron-ethyl restrained some uncultured nitrogen-fixing bacteria, ammonia-oxidizing bacteria Nitrosospira sp. cluster 3a and 3d, and some novel or putative denitrifying bacteria. The nitrogen-fixing bacteria were closely related to Bradyrhizobium sp., ammonia-oxidizing bacteria Nitrosospira sp. cluster 3b and 3c, and most denitrifying bacteria were resistant to chlorimuron-ethyl. There was a negative correlation between the nitrification potential and the residual amount of soil chlorimuron-ethyl (R2?=?0.88, n?=?3, P?<?0.05). Therefore, long-term application of chlorimuron-ethyl in the continuously cropped soybean field could seriously disturb soil N-transforming communities, and might impact soybean soil biological quality and soybean growth. Further studies should address rational amendment models of this herbicide to reduce the possible ecological risks of long-term application of this herbicide to soybean fields.  相似文献   

5.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

6.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

7.
Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges from these activities have caused adverse impacts on the quality of the receiving waterways. In particular nitrogenous compounds, which may accumulate in aquaculture ponds, can be toxic to aquatic animals and cause environmental problems such as eutrophication. The mineralization process is well known, but certain aspects of the microbial ecology of nitrifiers, the microorganisms that convert ammonia to nitrate, are poorly understood. A previously reported enrichment of nitrifying bacteria (ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) from a shrimp farm inoculated in a sequencing batch reactor (SBR) was studied by molecular methods. The initial identification and partial quantification of the nitrifying bacteria (AOB and NOB) were carried out by fluorescence in situ hybridization (FISH) using previously published 16S rRNA-targeting oligonucleotide probes. The two dominant bacterial groups detected by FISH were from the Cytophaga-Flavobacterium-Bacteroides and Proteobacteria (beta subdivision) phyla. Published FISH probes for Nitrobacter and Nitrospira did not hybridize to any of the bacterial cells. Therefore it is likely that new communities of NOBs, differing from previously reported ones, exist in the enrichments. Molecular genetic techniques (cloning, sequencing, and phylogenetic analysis) targeting the 16S rRNA genes from the nitrifying enrichments were performed to identify putative AOBs and NOBs.  相似文献   

8.
The purpose of this study was to examine the effects of different nutrient (carbon, nitrogen, oxygen) concentrations on the microbial activity and community structure in membrane-aerated biofilms (MABs). MABs were grown under well-defined conditions of fluid flow, substrate concentration, and membrane oxygen partial pressure. Biofilms were then removed and thin-sliced using a cryostat/microtome parallel to the membrane. Individual slices were analyzed for changes with depth in biomass density, respiratory activity, and the population densities of ammonia-oxidizing and denitrifying bacteria populations. Oxygen-sensing microelectrodes were used to determine the depth of oxygen penetration into each biofilm. Our results demonstrated that ammonia-oxidizing bacteria grow near the membrane, while denitrifying bacteria grow a substantial distance from the membrane. However, nitrifying and denitrifying bacteria did not grow simultaneously when organic concentrations became too high or ammonia concentrations became too low. In conclusion, membrane-aerated biofilms exhibit substantial stratification with respect to community structure and activity. A fundamental understanding of the factors that control this stratification will help optimize the performance of full-scale membrane-aerated biofilm reactors for wastewater treatment.  相似文献   

9.
The Achères wastewater treatment plant, located just downstream of Paris, discharges its effluents into the lower Seine River. The effluents contain large numbers of heterotrophic bacteria, organic matter, and ammonium and are a source of nitrifying bacteria. As a result, degradation of organic matter by heterotrophic bacteria and subsequent oxygen depletion occur immediately downstream of the effluent outlet, whereas nitrifying bacteria apparently need to build up a significant biomass before ammonium oxidation significantly depletes the oxygen. We quantified the potential total nitrifying activity and the potential activities of the ammonia- and nitrite-oxidizing communities along the Seine River. In the summer, the maximum nitrifying activity occurs in the upper freshwater estuary, approximately 200 km downstream of Achères. The quantities of nitrifying bacteria, based on amoA gene copy numbers, and of Nitrobacter organisms, based on 16S rRNA gene copy numbers, were correlated with the potential nitrifying activities. The species composition of ammonia-oxidizing bacteria was investigated at two sites: the Triel station just downstream from Achères (km 84) and the Seine freshwater estuary at the Duclair station (km 278). By means of PCR primers targeting the amoA gene, a gene library was created. Phylogenetic analysis revealed that the majority of the analyzed clones at both sites were affiliated with the genus NITROSOMONAS: The Nitrosomonas oligotropha- and Nitrosomonas urea-related clones represented nearly 81% of the community of ammonia-oxidizing bacteria at Triel and 60% at Duclair. Two other ammonia-oxidizing clusters of the beta subclass of the Proteobacteria, i.e., Nitrosomonas europaea- and Nitrosospira-like bacteria, were found in smaller numbers. The major change in the ammonia-oxidizing community between the two stations along the Seine River-upper estuary continuum was the replacement of the N. oligotropha- and N. urea-related bacteria by the Nitrosospira-affiliated bacteria. Although the diversities of the ammonia oxidizers appear to be similar for the two sites, only half of the restriction patterns are common to both sites, which could be explained by the differences in ammonium concentrations, which are much lower in the upper estuary than in the river at the effluent outlet. These results imply a significant immigration and/or selection of the ammonia-oxidizing bacterial population along the continuum of the Seine River from Paris to the estuary.  相似文献   

10.
Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.  相似文献   

11.
In this study, ammonia-oxidizing bacteria present in biofilms resulting from a nitrifying reactor were detected by both a conventional FISH technique and an original in situ PCR technique. Both techniques showed that ammonia-oxidizing bacteria were found near the surface of the biofilms. However, after the biofilm had been exposed to 2 weeks of ammonia starvation, ammonia-oxidizing bacteria present in the biofilm could not be detected by fluorescence in situ hybridization (FISH) because they did not have sufficient copies of rRNA. In contrast, ammonia-oxidizing bacteria could be detected by in situ PCR with strong signal. It was thus demonstrated that a cell possessing a specific functional gene is detectable by in situ PCR regardless of its activity.  相似文献   

12.
Jiao Y  Zhao Q  Jin W  Hao X  You S 《Bioresource technology》2011,102(2):990-995
In this study, specialized bacteria were domesticated and cultivated with polluted stream water. The bioaugmentation of specialized bacteria would significantly enhance the removal efficiency of TN and NH4+-N from 25.9% to 50.3%, and from 34.5% to 60.1%, respectively. Concomitant increases in the number of microbial communities and the proportion of nitrifying bacteria were also identified by the most probable number (MPN) method. PCR-DGGE profiles revealed that the bacterial community could be successfully enriched and the ammonia-oxidizing bacteria communities were shown predominant by the species of Nitrosomonas. The biological contact oxidation ditch (BCOD) system augmented with specialized bacteria can be a viable alternative for treating polluted stream water to achieve improved nitrogen removal.  相似文献   

13.
High emissions of nitrous oxide (N(2)O) have recently been documented at municipal solid waste (MSW) landfills. However, the biodiversity of the bacterial populations involved remains unexplored. In this study, we investigated communities of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria associated with the leachates from three MSW disposal sites by examining the diversity of the ammonia monooxygenase structural gene amoA and the nitrous oxide reductase gene nosZ, respectively. Cloning and phylogenetic analysis of the functional genes revealed novel and similar groups of prokaryotes involved in nitrogen cycling in the leachates with different chemical compositions. All amoA sequences recovered grouped within the Nitrosomonas europaea cluster in the Betaproteobacteria, with the vast majority showed only relatively moderate sequence similarities to known AOB but were exclusively most similar to environmental clones previously retrieved from wastewater treatment plants. All nosZ sequences retrieved did not cluster with any hitherto reported nosZ genes and were only remotely related to recognized denitrifiers from the Gammaproteobacteria and thus could not be affiliated. Significant overlap was found for the three denitrifying nosZ leachate communities. Our study suggests a significant selection of the novel N-cycling groups by the unique environment at these MSW disposal sites.  相似文献   

14.
The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of beta-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria.  相似文献   

15.
水体氮素污染日益严重,如何经济、高效地去除水体氮素已成为研究热点。近年来,研究人员已从不同环境中分离到许多同时具有异养硝化和好氧反硝化功能的菌株,此类菌生长迅速,可在好氧条件下同时实现硝化和反硝化的过程,并可用于脱除有机污染物,是一类应用潜力巨大的脱氮菌。目前,异养硝化-好氧反硝化菌的脱氮途径和机制主要是通过测定氮循环中间产物或终产物、测定相关酶活性、注释部分氮循环相关基因及参考自养硝化菌和缺氧反硝化菌的氮循环途径等进行研究,其完整的氮素转化途径和氮代谢机制还需要进一步明确。总结了目前异养硝化-好养反硝化菌的脱氮相关酶系及其编码基因的研究进展,以期为异养硝化-好氧反硝化菌的理论研究及其在污水脱氮处理上的应用提供参考。  相似文献   

16.
袁飞  冉炜  胡江  沈其荣 《生态学报》2005,25(6):1318-1324
实验选用了我国3种不同土壤研究土壤硝化活性、硝化细菌数量,并使用变性梯度凝胶电泳(DGGE)的方法研究了不同土壤中氨氧化细菌(AOB)区系变化。通过28d的土壤培养实验研究发现,潮土具有最强的硝化势,几乎100%的铵态氮转化为硝态氮;而红壤中的硝化势最弱,只有4.9%的铵态氮转化为硝态氮。对这3种土壤硝化细菌进行计数发现,3种土壤氨氧化菌数量差异显著,而3种土壤亚硝酸氧化菌(NOB)处于一个数量级。采用氨氧化菌功能基因amoA(氨单加氧酶ammoniamonooxygenase)特异PCR结合DGGE的方法对土壤氨氧化菌区系进行分析。红壤有4个氨氧化菌种属,与潮土和黄泥土没有共同的氨氧化菌种属。4个种属中两个是与潮土和黄泥土亲源性比较远的,特有的氨氧化菌种属,这两个种属与已知的Nitrosospira属的cluster3bz97838和Nitrosospira属的cluster3aAF353263亲源性比较近。潮土有5个氨氧化菌种属,潮土与黄泥土有两个共同的氨氧化菌种属,这两个种属中的一个是潮土和黄泥土特有的,与其他氨氧化菌种属亲源性比较远的氨氧化菌种属,这个种属与已知的Nitrosospira属的cluster3bZ97849亲源性比较近。黄泥土有4个氨氧化菌种属,除了与潮土共有的一个种属是两种土壤特有的氨氧化菌种属外,黄泥土还有一个与其他氨氧化菌种属亲源性比较远的,黄泥土特有的种属,与Nitrosospira属的cluster3aAF353263亲源性很近。3种土壤中分离到的硝化细菌表现出不同的硝化能力。实验结果表明,以amoA基因为目标的PCR-DGGE是比以16SrDNA为目标的PCR-DGGE更有效的研究氨氧化菌种群的方法;3种土壤的氨氧化菌种群差异显著,尤其是红壤的氨氧化菌种群与另外两种土壤差异明显,这种差异可能与红壤的低pH条件对氨氧化菌种群的长期选择有关;3种土壤中的硝化活性与土壤中的硝化细菌数量没有显著相关,可能由于3种土壤差异显著的土壤环境对硝化活性的影响造成。因此在对不同土壤硝化细菌进行研究时不仅需要对硝化细菌数量进行研究,还需要研究不同土壤中硝化细菌的种属及不同土壤环境条件对硝化细菌硝化活性的影响。  相似文献   

17.
The bacterial community structure, in situ spatial distributions and activities of nitrifying and denitrifying bacteria in biofilms treating industrial wastewater were investigated by combination of the 16S rRNA gene clone analysis, fluorescence in situ hybridization (FISH) and microelectrodes. These results were compared with the nitrogen removal capacity of the industrial wastewater treatment plant (IWTP). Both nitrification and denitrification occurred in the primary denitrification (PD) tank and denitrification occurred in the secondary denitrification (SD) tank. In contrast, nitrification and denitrification rates were very low in the nitrification (N) tank. 16S rRNA gene clone sequence analysis revealed that the bacteria affiliated with Alphaproteobacteria, followed by Betaproteobacteria, were numerically important microbial groups in three tanks. The many clones affiliated with Alphaproteobacteria were closely related to the denitrifying bacteria (e.g., Hyphomicrobium spp., Rhodopseudomonas palustris, and Rhodobacter spp.). In addition, Methylophilus leisingeri affiliated with Betaproteobacteria, which favorably utilized methanol, was detected only in the SD-tank to which methanol was added. Nitrosomonas europaea and Nitrosomonas marina were detected as the ammonia-oxidizing bacteria affiliated with Betaproteobacteria throughout this plant, although the dominant species of them was different among three tanks. Nitrifying bacteria were mainly detected in the upper parts of the PD-biofilm whereas their populations were low in the upper parts of the N-biofilm. The presence of denitrifying bacteria affiliated with Hyphomicrobium spp. in SD- and N-biofilms was verified by FISH analysis. Microelectrode measurements showed that the nitrifying bacteria present in the N- and PD-biofilms were active and the bacteria present in the SD-biofilm could denitrify.  相似文献   

18.
牛晓倩  周胜虎  邓禹 《生物工程学报》2021,37(10):3505-3519
脱氮是大部分污水处理系统中不可缺少的一环。由于具有经济高效、工艺简单和无二次污染等显著优势,生物脱氮工艺在最近数十年中备受关注。根据脱氮微生物的生理特性和脱氮机制不同,文中分类综述了近年来生物脱氮工艺的研究进展,重点对比分析了硝化菌、反硝化菌和厌氧氨氧化菌以及以这些菌为基础的不同生物脱氮工艺的优缺点,为复杂污水环境的脱氮工艺选择提供参考。基于微生物脱氮机制,通过合成生物学技术开发高效脱氮菌株,结合不同工艺优点并应用自动化模拟最佳条件,从而建立经济高效的脱氮工艺将是未来发展的重要方向。  相似文献   

19.
池塘氮循环中各种细菌与理化因子的相关性研究   总被引:11,自引:0,他引:11  
对精养鱼池的水体及淤泥进行多次采样,用统计学分析处理,结果表明:硝化类细菌总体上与各主要理化因子的相关性较强(R>0.60),其中氨化菌主要与溶氧相关程度较高;反硝化菌主要与有效磷相关程度较高;亚硝化菌主要与氨氮负相关程度较高;硝化菌主要与亚硝酸盐相关程度较高。硝化类细菌与异养菌之间的相关性则更强,如反硝化菌与厌养菌(R=0.944,P=0.001)、拓硝化菌和好氧异养菌(R=0.832,P=0.003)皆显正相关,亚硝化菌和厌氧异养菌(R=-0.76,P=0.009)显负相关;而在硝化类细菌之间的相关程度却较弱(R<0.60),表明池塘硝化类细菌对水质具有一定的调控作用,但相互之间的依赖性不强,各自相对独立地发挥作用。  相似文献   

20.
The community structure and potential activities of nitrifying and denitrifying bacteria were studied in the rhizosphere of Typha latifolia and Phragmites australis present in a free water system constructed wetland (CW). Potential nitrate reduction and nitrification activities were shown to be significantly higher in the rhizosphere when compared with the nonvegetated sediment. Higher rates were generally obtained for P. australis . The community structure of denitrifying bacteria in the rhizosphere differed from that found at the bulk sediment, as revealed by PCR-denaturing gradient gel electrophoresis (DGGE) of the nitrous oxide reductase encoding gene nosZ . Results also show a greater nosZ genotype diversification and suggest a plant species effect in rhizosphere samples obtained during events of low hydraulic retention times. Ammonia-oxidizing communities were less complex on the basis of PCR-DGGE analysis of the 16S rRNA gene. Retrieved sequences were all related to Nitrosomonas marina and Nitrosomonas ureae , being both present in rhizosphere and bulk sediment regardless of environmental changes. The results demonstrate the effect of vegetation on the functioning and structure of bacterial communities involved in the removal of nitrogen in the treatment cells of a CW and point to the use of vegetation coverage to promote nitrification or denitrification in particular areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号