首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Gene loss, inversions, translocations, and other chromosomal rearrangements vary among species, resulting in different rates of structural genome evolution. Major chromosomal rearrangements are rare in most eukaryotes, giving large regions with the same genes in the same order and orientation across species. These regions of macrosynteny have been very useful for locating homologous genes in different species and to guide the assembly of genome sequences. Previous analyses in the fungi have indicated that macrosynteny is rare; instead, comparisons across species show no synteny or only microsyntenic regions encompassing usually five or fewer genes. To test the hypothesis that chromosomal evolution is different in the fungi compared to other eukaryotes, synteny was compared between species of the major fungal taxa.  相似文献   

2.
Cancer cells become unstable and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the genomic instability. Several factors influence the formation of chromosomal rearrangements and consequently of fusion genes and their role in tumorigenesis. Studies over the past decades have revealed that recurring chromosome rearrangements leading to fusion genes have a biological and clinical impact not only on leukemias and lymphomas, but also on certain epithelial tumors. With the implementation of new and powerful cytogenetic and molecular techniques the identification of fusion genes in solid tumors is being facilitated. Overall, the study of chromosomal translocations have revealed several recurring themes, and reached important insights into the process of malignant transformation. However, the mechanisms behind these translocations remain unclear. A more thorough understanding of the mechanisms that cause translocations will be aided by continuing characterization of translocation breakpoints and by developing in vitro and in vivo model systems that can generate chromosome translocation.  相似文献   

3.
Chromosomal translocations in cancer   总被引:1,自引:0,他引:1  
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.  相似文献   

4.
Chromosomal rearrangements in wheat: their types and distribution.   总被引:1,自引:0,他引:1  
Four hundred and sixty polyploid wheat accessions and 39 triticale forms from 37 countries of Europe, Asia, and USA were scored by C-banding for the presence of translocations. Chromosomal rearrangements were detected in 70 of 208 accessions of tetraploid wheat, 69 of 252 accessions of hexaploid wheat, and 3 of 39 triticale forms. Altogether, 58 types of major chromosomal rearrangements were identified in the studied material; they are discussed relative to 11 additional translocation types described by other authors. Six chromosome modifications of unknown origin were also observed. Among all chromosomal aberrations identified in wheat, single translocations were the most frequent type (39), followed by multiple rearrangements (9 types), pericentric inversions (9 types), and paracentric inversions (3 types). According to C-banding analyses, the breakpoints were located at or near the centromere in 60 rearranged chromosomes, while in 52 cases they were in interstitial chromosome regions. In the latter case, translocation breakpoints were often located at the border of C-bands and the euchromatin region or between two adjacent C-bands; some of these regions seem to be translocation "hotspots". Our results and data published by other authors indicate that the B-genome chromosomes are involved in translocations most frequently, followed by the A- and D-genome chromosomes; individual chromosomes also differ in the frequencies of translocations. Most translocations were detected in 1 or 2 accessions, and only 11 variants showed relatively high frequencies or were detected in wheat varieties of different origins or from different species. High frequencies of some translocations with a very restricted distribution could be due to a "bottleneck effect". Other types seem to occur independently and their broad distribution can result from selective advantages of rearranged genotypes in diverse environmental conditions. We found significant geographic variation in the spectra and frequencies of translocation in wheat: the highest proportions of rearranged genotypes were found in Central Asia, the Middle East, Northern Africa, and France. A low proportion of aberrant genotypes was characteristic of tetraploid wheat from Transcaucasia and hexaploid wheat from Middle Asia and Eastern Europe.  相似文献   

5.
Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.  相似文献   

6.
The human immunoglobulin V lambda locus has been studied in relation to chromosomal translocations involving chromosome 22. DNA probes for two V lambda genes which belong to different subgroups and do not cross hybridize, were used to show that both V lambda genes are located on the Philadelphia chromosome in chronic myeloid leukaemia (CML). Both genes map in band 22q11 to a region that is bounded on the distal side by the breakpoints for CML 9:22 translocations and on the proximal side by the breakpoint for an X:22 translocation. We have found no evidence for rearrangements or amplification of either V lambda gene in CML, in either the chronic or acute phases of the disease. In K562 cells which are derived from the pleural effusion of a patient with Ph1-positive CML, there appears to be no rearrangement of the V lambda genes, but they are both amplified about four times. We have estimated that the minimum size for the amplification unit in K562 cells is 186 kb.  相似文献   

7.
8.
McCord RP  Dekker J 《Cell》2011,147(1):20-22
Recurrent chromosomal translocations can drive oncogenesis, but how they form has remained elusive. Now, Chiarle et al. (2011) and Klein et al. (2011) characterize the genome-wide spectrum of translocations that form from a single double-stranded break, revealing that specific loci have an intrinsic predisposition for frequent chromosomal rearrangements.  相似文献   

9.
10.
Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom''s-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers.  相似文献   

11.
12.
X-linked premature ovarian failure: a complex disease   总被引:2,自引:0,他引:2  
Involvement of the X chromosome in premature ovarian failure was demonstrated by the relatively frequent chromosomal rearrangements in patients, but the requirement of two X chromosomes for ovarian function was quite unexplained until recently. Review of the data on chromosomal rearrangements suggests that several genes along the X chromosomes contribute to ovarian function. In most instances, no single X chromosome gene has a causative role in premature ovarian failure, and the phenotype is likely to derive from the additive effect of X-linked and non-X-linked factors. Recent data on a small group of balanced X-autosome translocations showed that X-linked premature ovarian failure might also be caused by a different mechanism, namely position effect of the X chromosome on non-X-linked genes, and suggest a peculiar organization of the X chromosome during oogenesis.  相似文献   

13.
In this report we summarized our experience (1970-1986) on autosomal reciprocal translocations with particular interest towards the possible excess of mental retardation and congenital malformations in carriers of apparently balanced chromosomal rearrangements. The present data confirm the previous findings that the association of MR/MCA and apparently balanced autosomal chromosomal rearrangements is much higher than expected by chance.  相似文献   

14.
Cancer-specific fusion genes are often caused by cytogenetically visible chromosomal rearrangements such as translocations, inversions, deletions or insertions, they can be the targets of molecular therapy, they play a key role in the accurate diagnosis and classification of neoplasms, and they are of prognostic impact. The identification of novel fusion genes in various neoplasms therefore not only has obvious research importance, but is also potentially of major clinical significance. The “traditional” methodology to detect them began with cytogenetic analysis to find the chromosomal rearrangement, followed by utilization of fluorescence in situ hybridization techniques to find the probe which spans the chromosomal breakpoint, and finally molecular cloning to localize the breakpoint more precisely and identify the genes fused by the chromosomal rearrangement. Although laborious, the above-mentioned sequential approach is robust and reliable and a number of fusion genes have been cloned by such means. Next generation sequencing (NGS), mainly RNA sequencing (RNA-Seq), has opened up new possibilities to detect fusion genes even when cytogenetic aberrations are cryptic or information about them is unknown. However, NGS suffers from the shortcoming of identifying as “fusion genes” also many technical, biological and, perhaps in particular, clinical “false positives,” thus making the assessment of which fusions are important and which are noise extremely difficult. The best way to overcome this risk of information overflow is, whenever reliable cytogenetic information is at hand, to compare karyotyping and sequencing data and concentrate exclusively on those suggested fusion genes that are found in chromosomal breakpoints.This article is part of a Directed Issue entitled: Rare Cancers.  相似文献   

15.
Marques-Bonet T  Navarro A 《Gene》2005,353(2):147-154
Evolutionary rates are not uniformly distributed across the genome. Knowledge about the biological causes of this observation is still incomplete, but its exploration has provided valuable insight into the genomical, historical and demographical variables that influence rates of genetic divergence. Recent studies suggest a possible association between chromosomal rearrangements and regions of greater divergence, but evidence is limited and contradictory. Here, we test the hypothesis of a relationship between chromosomal rearrangements and higher rates of molecular evolution by studying the genomic distribution of divergence between 12,000 human-mouse orthologous genes. Our results clearly show that genes located in genomic regions that have been highly rearranged between the two species present higher rates of synonymous (0.7686 vs. 0.7076) and non-synonymous substitution (0.1014 vs. 0.0871), and that synonymous substitution rates are higher in genes close to the breakpoints of individual rearrangements. The many potential causes of such striking are discussed, particularly in the light of speciation models suggesting that chromosomal rearrangements may have contributed to some of the speciation processes along the human and mouse lineages. Still, there are other possible causes and further research is needed to properly explore them.  相似文献   

16.
Several experimental in vivo systems exist that generate reciprocal translocations between engineered chromosomal loci of yeast or Drosophila, but not without previous genome modifications. Here we report the successful induction of chromosome translocations in unmodified yeast cells via targeted DNA integration of the KANR selectable marker flanked by sequences homologous to two chromosomal loci randomly chosen on the genome. Using this bridge-induced translocation system, 2% of the integrants showed targeted translocations between chromosomes V-VIII and VIII-XV in two wild-type Saccharomyces cerevisiae strains. All the translocation events studied were found to be non-reciprocal and the fate of their chromosomal fragments that were not included in the translocated chromosome was followed. The recovery of discrete-sized fragments suggested multiple pathway repair of their free DNA ends. We propose that centromere-distal chromosome fragments may be processed by a break-induced replication mechanism ensuing in partial trisomy. The experimental feasibility of inducing chromosomal translocations between any two desired genetic loci in a eukaryotic model system will be instrumental in elucidating the molecular mechanism underlying genome rearrangements generated by DNA integration and the gross chromosomal rearrangements characteristic of many types of cancer.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Molecular phylogenies based on sequences of mitochondrial cytochrome b and nuclear IRBP genes are assessed on a comprehensive taxonomic sampling of African pygmy mice (subgenus Nannomys of the genus Mus). They represent a taxonomically diversified group of morphologically similar species, and exhibit an important chromosomal diversity, particularly involving sex-autosome translocations, one of the rarest and most deleterious chromosomal changes among mammals. The results show that the species sampled are genetically well differentiated, and that chromosomal rearrangements offer accurate diagnostic characters for discriminating most species. Furthermore, the species carrying different sex-autosome translocations appear monophyletic, suggesting that a genome modification allowing a higher rate of occurrence and/or fixation of such translocations took place, leading to the emergence of this lineage. In addition to taxonomic and biogeographical clarifications, we provide a temporal framework within which patterns of genic and chromosomal evolution are discussed.  相似文献   

18.
MLL is a promiscuous gene involved in a diversity of chromosomal fusions in haematological malignancies, usually resulting from chromosomal translocations. MLL-associated chromosomal rearrangements usually occur in tumours of specific haematological lineages, suggesting a crucial role for the MLL fusion partner in determining disease phenotype (or tumour tropism). The MLL gene is homologous to Drosophila trithorax, and is likewise involved in embryo pattern formation. Common themes linking several of the MLL partners include a possible involvement in embryo patterning via Hox gene regulation and chromatin remodelling. These findings reinforce the link between developmental regulation and chromosomal translocations, and indicate the role of chromosomal translocation in activating genes capable of determining tumour phenotype in leukaemias and sarcomas.  相似文献   

19.
Summary The karyotypes of more than 60 species of Primates are studied and compared, with the use of almost all existing banding techniques. There is a very close analogy of chromosome banding between the Simians studied and man. The quantitative or qualitative variations detected all involve the heterochromatin. It is very likely that all the euchromatin (nonvariable R and Q bands) is identical in all the species.Approximately 70% of the bands are common to the Simians and to the Lemurs (Prosimians). In the remaining 30%, technical difficulties prevented a valuable comparison, but this does not exclude the possibility that a complete analogy may exist.Thus, it is very likely that chromosomal evolutions of the Simians, and probably of all the Primates, has occurred without duplication or deficiency of the euchromatin.Approximately 150 rearrangements could be identified and related to the human chromosomes. The types of rearrangements vary from one group (suborder, family, genus) to another. For instance, Robertsonian translocations are preponderant among the Lemuridae (44/57) but are nonexistent among the Pongidae. Chromosome fissions are very frequent among the Cercopithecidae (10/23), but were not found elsewhere, and pericentric inversions are preponderant in the evolution of Pongidae and man (17/28).This suggests that the chromosomal evolution may be directed by the genic constitution (favouring the occurrence of a particular type of rearrangement, by enzymatic reaction), by the chromosomal morphology (the probability that Robertsonian translocations will be formed depends at least partially on the number of acrocentrics), and by the reproductive behaviour of the animals.Reconstitution of the sequence of the chromosomal rearrangements allowed us to propose a fairly precise genealogy of many Primates, giving the positions of the Catarrhines, the Platyrrhines, and the Prosimians. It was also possible to reconstruct the karyotypes of ancestors that died out several dozen million years ago.The possible role of chromosomal rearrangements in evolution is discussed. It appears necessary to consider different categories of rearrangements separately, depending on their behaviour. The nonfavoured rearrangements, such as pericentric inversions, need to occur in an isolated small population for implanting, by an equivalent of genic derivation.The favoured rearrangements, e.g., Robertsonian translocations, may occur and diffuse in panmictic populations, and accumulate. Their role of gametic barrier could be much more progressive.For discrimination between these two categories, it was necessary to differentiate the selective advantage or disadvantage of the rearrangement itself. It was not possible to show that chromosomal rearrangements play a direct role in modification of the phenotype by position effect.Comparison of the rearrangements that have occurred during evolution and those detected in the human population shows a strong correlation for some of them. In particular, a large proportion of pericentric inversions can be regarded as reverse mutations, because they reproduce ancestral chromosomes.  相似文献   

20.
In this article, we show that introns harboring translocation breakpoints in tumors are significantly longer than non-translocated introns of the same genes but are not enriched significantly in sequence elements potentially involved in chromosomal rearrangements. Our findings provide evidence that double-strand breaks, the type of DNA damage that leads to translocations in tumors, are created at random points in the genome, and that sequence elements do not have a widespread role in the localization of these breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号