首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenergic regulation of adipocyte metabolism   总被引:12,自引:0,他引:12  
Adipocytes can be readily isolated from intact adipose tissue. In adipocytes from hamster and human white adipose tissue it is possible to demonstrate beta, alpha 1, and alpha 2 adrenoceptors. Alpha 2 adrenoceptor activation inhibits while beta adrenoceptor activation stimulates cyclic AMP accumulation and lipolysis. The effects of catecholamines on cyclic AMP accumulation are mediated through regulation of adenylate cyclase activity, which is activated through beta adrenoceptors and inhibited through alpha 2 adrenoceptors. Activation of alpha 1 adrenergic receptors has been shown to be associated with elevations of cytosol calcium and increased turnover of phosphatidylinositol. In white adipocytes, the only known alpha 1 adrenergic effects are inhibition of glycogen synthase and stimulation of glycogen phosphorylase via mechanisms distinct from those by which cyclic AMP produces similar end effects. In brown adipocytes, alpha 1 adrenoceptor activation stimulates respiration. Thyroid hormones primarily regulate the sensitivity of adipocytes to beta-adrenergic amines while having little effect on alpha adrenoceptor sensitivity.  相似文献   

2.
3.
4.
AimsThe polymethoxyflavonoids nobiletin and tangeretin possess several important biological properties such as neuroprotective, antimetastatic, anticancer, and anti-inflammatory properties. The present study was undertaken to examine whether nobiletin and tangeretin could modulate adipocytokine secretion and to evaluate the effects of these flavonoids on the hypertrophy of mature adipocytes.Main methodsAll experiments were performed on the murine preadipocyte cell line 3T3-L1. We studied the formation of intracellular lipid droplets in adipocytes and the apoptosis-inducing activity to evaluate the effects of polymethoxyflavonoids on adipocyte differentiation and hypertrophy, respectively. The secretion of adipocytokines was measured using ELISA.Key findingsWe demonstrated that the combined treatment of differentiation reagents with nobiletin or tangeretin differentiated 3T3-L1 preadipocytes into adipocytes possessing less intracellular triglyceride as compared to vehicle-treated differentiated 3T3-L1 adipocytes. Both flavonoids increased the secretion of an insulin-sensitizing factor, adiponectin, but concomitantly decreased the secretion of an insulin-resistance factor, MCP-1, in 3T3-L1 adipocytes. Furthermore, nobiletin was found to decrease the secretion of resistin, which serves as an insulin-resistance factor. In mature 3T3-L1 adipocytes, nobiletin induced apoptosis; tangeretin, in contrast, did not induce apoptosis, but suppressed further triglyceride accumulation.SignificanceOur results suggest that nobiletin and tangeretin are promising therapeutic candidates for the prevention and treatment of insulin resistance by modulating the adipocytokine secretion balance. We also demonstrated the different effects of nobiletin and tangeretin on mature adipocytes.  相似文献   

5.
OBJECTIVE: Leptin receptors are expressed in adipocytes, suggesting potential autocrine/paracrine effects. Studies on the direct effects of leptin on adipose tissue metabolism in different species have yielded controversial data. To assess the in vitro effects of leptin on human adipocyte metabolism: lipolysis, the insulin-induced inhibition of lipolysis and lipogenesis were studied in adipocytes obtained from infants and adults. METHODS: Lipolysis was studied by incubating adipocytes with increasing concentrations of leptin or isoprenaline. Glycerol in the incubation medium was measured as an indicator of lipolysis. For the lipogenesis and insulin-induced inhibition of lipolysis experiments, the cells were preincubated with 0, 25, or 250 ng/ml of leptin for 2 h. RESULTS: Leptin did not stimulate lipolysis in human adipocytes, either in children or adults. Preincubation with leptin did not affect the insulin-induced inhibition of lipolysis, but decreased the insulin-induced lipogenesis (p < 0.05). CONCLUSIONS: This study shows that leptin has no direct lipolytic effect in human adipocytes. The lack of effect on the insulin-induced inhibition of lipolysis and the negative effect on lipogenesis indicates that the effect of leptin is not at the proximal insulin-signalling pathway but further downstream.  相似文献   

6.
Lithium impairs the appearance of the characteristic morphology of brown adipocytes and downregulates the expression of marker genes of brown adipocyte differentiation. These effects are dose-dependent and are more pronounced when exposure of preadipocytes to lithium is initiated at early stages of differentiation. Although lithium reduces the expression of genes common to both white and brown adipocytes [fatty acid binding protein aP2 (aP2/FABP) or peroxisome proliferating activated receptor gamma], genes expressed differentially in brown adipocytes, i.e., uncoupling protein 1, PPAR gamma coactivator-1alpha, and peroxisome proliferating activated receptor alpha, are particularly sensitive to lithium treatment-dependent downregulation. Brown adipocytes appear as preferential targets of the inhibitory action of lithium on adipocyte differentiation.  相似文献   

7.
Nam SY  Marcus C 《Hormone research》2000,53(Z1):87-97
In obesity, growth hormone (GH) secretion is impaired which is considered a consequence rather than a cause of obesity. GH regulates the expression of GH receptor and the synthesis of insulin-like growth factor I (IGF-I) in adipocytes. Although GH hyposecretion in obesity may decrease the generation of IGF-I in each adipocyte, increased amounts of IGF-I and GH-binding protein could be secreted from the excessively enlarged amounts of adipose tissue. This may contribute to the normal/high serum-IGF-I and high GH-binding protein levels in obesity. Hyperinsulinemia and increased GH receptor activity may also affect the GH-IGF-I axis. Favorable effects of GH treatment have been observed in obese children and adults. GH treatment decreases adiposity, reduces triglyceride accumulation by inhibiting lipoprotein lipase and enhances lipolysis both via increased hormone-sensitive lipase activity and via induction of beta adrenoreceptors. GH treatment also has a favorable effect on obesity-associated dyslipidemia, but the effects on insulin sensitivity have been conflicting.  相似文献   

8.
9.
Cultured TA1 adipocytes treated with tumor necrosis factor alpha (TNF) lose intracytoplasmic lipid and, over a period of days, come to resemble their predifferentiated progenitors (preadipocytes). To examine the extent to which this phenotypic reversion represents a return to a less differentiated cell, we examined three major characteristics that distinguish preadipocytes from adipocytes: (a) pattern of gene expression; (b) hormonal requirement for accelerated adipogenesis; and (c) pattern of protein synthesis. We found that within hours of TNF addition to adipocytes, mRNAs for genes whose expression is augmented during adipogenesis decreased to predifferentiated levels; in addition, like preadipocytes, TNF-treated adipocytes required exposure to hormones to accelerate adipogenesis. Further, the pattern of protein synthesis seen on polyacrylamide gels reverted to that seen before differentiation. Transforming growth factor-beta (TGF-beta) also caused a rapid decrease in expression of adipose genes when added to fully differentiated cells, an effect that was achieved by treatment with either TGF-beta 1 or TGF-beta 2. These effects were seen in the absence of a demonstrable proliferative response to either TNF or TGF-beta. Thus characteristics that define the "terminally" differentiated state in adipocytes are subject to modulation by environmental influences.  相似文献   

10.
This study assessed the effects of selective inhibitors of 3',5'-cyclic nucleotide phosphodiesterases (PDEs) on adipocyte lipolysis. IC224, a selective inhibitor of type 1 phosphodiesterase (PDE1), suppressed lipolysis in murine 3T3-L1 adipocytes (69.6 +/- 5.4% of vehicle control) but had no effect in human adipocytes. IC933, a selective inhibitor of PDE2, had no effect on lipolysis in either cultured murine 3T3-L1 adipocytes or human adipocytes. Inhibition of PDE3 with cilostamide moderately stimulated lipolysis in murine 3T3-L1 and rat adipocytes (397 +/- 25% and 235 +/- 26% of control, respectively) and markedly stimulated lipolysis in human adipocytes (932 +/- 7.6% of control). Inhibition of PDE4 with rolipram moderately stimulated lipolysis in murine 3T3-L1 adipocytes (291 +/- 13% of control) and weakly stimulated lipolysis in rat adipocytes (149 +/- 7.0% of control) but had no effect on lipolysis in human adipocytes. Cultured adipocytes also responded differently to a combination of PDE3 and PDE4 inhibitors. Simultaneous exposure to cilostamide and rolipram had a synergistic effect on lipolysis in murine 3T3-L1 and rat adipocytes but not in human adipocytes. Hence, the relative importance of PDE3 and PDE4 in regulating lipolysis differed in cultured murine, rat, and human adipocytes.  相似文献   

11.
The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.  相似文献   

12.
Natural products have potential for inducing apoptosis, inhibiting adipogenesis and stimulating lipolysis in adipocytes. The objective of this review is to discuss the adipocyte life cycle and various dietary bioactives that target different stages of adipocyte life cycle. Different stages of adipocyte development include preadipocytes, maturing preadipocytes and mature adipocytes. Various dietary bioactives like genistein, conjugated linoleic acid (CLA), docosahexaenoic acid, epigallocatechin gallate, quercetin, resveratrol and ajoene affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted monotherapy has resulted in lack of success. Thus, targeting several signal transduction pathways simultaneously with multiple natural products to achieve additive or synergistic effects might be an appropriate approach to address obesity. We have previously reported two such combinations, namely, ajoene+CLA and vitamin D+genistein. CLA enhanced ajoene-induced apoptosis in mature 3T3-L1 adipocytes by synergistically increasing the expression of several proapoptotic factors. Similarly, genistein potentiated vitamin D's inhibition of adipogenesis and induction of apoptosis in maturing preadipocytes by an enhanced expression of VDR (vitamin D receptor) protein. These two examples indicate that combination therapy employing compounds that target different stages of the adipocyte life cycle might prove beneficial for decreasing adipose tissue volume by inducing apoptosis or by inhibiting adipogenesis or both.  相似文献   

13.
Melittin addition to rat or hamster adipocytes resulted in inhibition of lipolysis, cyclic AMP accumulation and glucose oxidation. Low concentrations of melittin were not insulin-like with respect to either stimulation of glucose metabolism or inhibition of lipolysis. Higher concentrations of melittin lysed adipocytes. In the presence of melittin, cellular phospholipids were released to the medium and hydrolyzed with little accumulation of lysophospholipids. Only in adipocytes incubated with melittin contaminated with phospholipase A2 was any appreciable accumulation of lysophospholipids seen and this was in the medium. These data suggest that the toxic effects of melittin on adipocytes are not due to the accumulation of lysophospholipids but rather to the loss of membrane phospholipids or alterations in membrane proteins.  相似文献   

14.
Brown adipocytes dissipate chemical energy in the form of heat through the expression of mitochondrial uncoupling protein 1 (Ucp1); Ucp1 expression is further upregulated by the stimulation of β‐adrenergic receptors in brown adipocytes. An increase in energy expenditure by activated brown adipocytes potentially contributes to the prevention of or therapeutics for obesity. The present study examined the effects of milk by‐products, buttermilk and butter oil, on brown adipogenesis and the function of brown adipocytes. The treatment with buttermilk modulated brown adipogenesis, depending on the product tested; during brown adipogenesis, buttermilk 1 inhibited the differentiation of HB2 brown preadipocytes. In contrast, buttermilk 3 and 5 increased the expression of Ucp1 in the absence of isoproterenol (Iso), a β‐adrenergic receptor agonist, suggesting the stimulation of brown adipogenesis. In addition, the Iso‐induced expression of Ucp1 was enhanced by buttermilk 2 and 3. The treatment with buttermilk did not affect the basal or induced expression of Ucp1 by Iso in HB2 brown adipocytes, except for buttermilk 5, which increased the basal expression of Ucp1. Conversely, butter oil did not significantly affect the expression of Ucp1, irrespective of the cell phase of HB2 cells, ie, treatment during brown adipogenesis or of brown adipocytes. The results of the present study indicate that buttermilk is a regulator of brown adipogenesis and suggest its usefulness as a potential food material for antiobesity.  相似文献   

15.
16.
A perturbation of zinc metabolism has been noted in subjects with obesity. Zinc may also participate in the intracellular signal cascade by affecting cellular calcium influx and a change in the calcium-calmodulin (CaM)-cyclic adenosine monophosphate (cAMP) pathway. The possible effects of zinc on cellular concentrations of CaM, a major cytosolic calcium-binding protein, in the adipocytes derived from obese (ob/ob) mice and their lean counterparts were studied. Adipocytes derived from both phenotypes of mice were treated either with 0.2 mM of zinc sulfate or without any additive for 1 h of incubation; the cellular levels of CaM and cAMP were then determined. The results showed that the obese mice had lower CaM and cAMP levels in their adipocytes compared to the lean mice. Zinc treatment reduced CaM and increased cAMP levels in all mice, although this effect was more pronounced in the lean mice. This study indicated that there was an inverse interaction between CaM and cAMP in their cellular levels in the mouse adipocytes and that might be affected by exogenous zinc addition.  相似文献   

17.
Objective: Glucose‐dependent insulinotropic polypeptide (GIP) is an incretin released from intestinal K‐cells during the postprandial period. Previous studies have suggested that GIP may play an etiologic role in obesity; thus, the GIP receptor may represent a target for anti‐obesity drugs. The present studies were conducted to elucidate mechanisms by which GIP might promote obesity by examining the effect of GIP on both glycerol release (indicative of lipolysis) and free fatty acid (FFA) release (indicative of both lipolysis and reesterification), as well as the ability of a GIP‐specific receptor antagonist (ANTGIP) to attenuate these effects. Research Methods and Procedures: Isolated rat adipocytes were perifused on a column with 10 nM GIP alone or in combination with 10 μU/mL insulin, 1 μM isoproterenol, or 1 μM ANTGIP. Samples were collected every minute and assayed for FFA, glycerol, and lactate. Results: GIP significantly increased FFA reesterification (decreased FFA release by 25%), stimulated lipolysis (increased glycerol release by 22%), and attenuated the lipolytic response to isoproterenol by 43%. These properties were similar to those of insulin in vitro, suggesting that GIP possesses insulin‐like lipogenic effects on adipocytes. Finally, ANTGIP reversed the effects of GIP on both basal and stimulated adipocyte metabolism. Discussion: These studies provide further evidence for an important physiological role for GIP in lipid homeostasis and possibly in the pathogenesis of obesity. They also suggest that the GIP receptor may represent an excellent target for the prevention and treatment of obesity and obesity‐related type 2 diabetes.  相似文献   

18.
19.
Adipocytes are insulin sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type II diabetes, cardiovascular disease, and metabolic syndrome. Obesity and its related disorders result in dysregulation of the mechanisms that control adipocyte gene expression and function. To identify potential novel therapeutic modulators of adipocytes, we screened 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We observed that less than 2% of the extracts had substantial effects on adipocyte differentiation of 3T3-L1 cells. Two of the botanical extracts that inhibited adipogenesis were extracts from St. John’s Wort (SJW). Our studies revealed that leaf and flower, but not root, extracts isolated from SJW inhibited adipogenesis as judged by examining PPARγ and adiponectin levels. We also examined the effects of these SJW extracts on insulin sensitivity in mature 3T3-L1 adipocytes. Both leaf and flower extracts isolated from SJW substantially inhibited insulin sensitive glucose uptake. The specificity of the observed effects was demonstrated by showing that treatment with SJW flower extract resulted in a time and dose dependent inhibition of insulin stimulated glucose uptake. SJW is commonly used in the treatment of depression. However, our studies have revealed that SJW may have a negative impact on adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

20.
The trans-10, cis-12 (10e12z) conjugated linoleic acid (CLA) isomer of CLA is responsible for loss of lipid storage or adipose tissue in vitro or in vivo. This isomer also induces inflammatory signaling in both mouse and human adipocytes in vitro. However, when these events occur and whether they are significant enough to affect other cell types are unclear. In these experiments, the 3T3-L1 cell line has been used to examine the interaction between inflammatory signaling and decreased differentiation or lipid storage induced by 10e12z CLA. In assays measuring both lipid accumulation and gene expression, differentiating 3T3-L1 cells exhibit concurrent induction of inflammatory signaling, as measured by cyclooxygenase-2 expression, and a decrease in adipocyte marker gene expression. Furthermore, in fully differentiated adipocytes, as identified in microarray assays and confirmed with real-time polymerase chain reaction, 10e12z CLA also significantly affected expression of both matrix metalloprotein-3 (MMP-3), collagen VI α 3 ColVI alpha 3 (VIα3) and the cytokine epiregulin, demonstrating that the effects of 10e12z broadly impact adipocyte function. In agreement with other experimental systems, 10e12z CLA inhibited RAW 264.7 cell proliferation; however, in response to adipocyte-conditioned media, 10e12z-CLA-treated adipocytes induced proliferation of this cell line, suggesting that the effect of 10e12z CLA is context dependent. These results are largely consistent with the known activation of the inflammatory mediator nuclear factor-κB in adipocytes in vitro and in vivo by 10e12z CLA treatment and demonstrate that adipose is an important target tissue of this isomer that impacts other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号