首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
It is known that mitochondrial respiration in state 3 is due to three simultaneous and independent processes: synthesis of ATP (1), endogenous passive proton leakage (2), and proton leakage by protonophoric uncoupler (3). The total rate of processes (2) and (3) is equal to the product of respiration rate in state 4 and coefficient KR, which is defined as the ratio of the deltamuH+ value in state 3 to that in state 4. It is shown that it is possible to calculate both the rates of processes (1), (2) and (3) separately and the protonophoric activity of uncoupler using the coefficient KR and other coefficients, which are determined as the ratio of deltamuH+ values in state 3 or in state 4 to its maximal value. Simple methods of determination of these coefficients were developed, which are based on the study of the dependence of respiration rate in states 3 and 4 on the concentration of protonophoric uncoupler. It was found that the uncoupling action of palmitate, a natural uncoupler of oxidative phosphorylation, unlike classic uncoupler-protonophores DNP and FCCP, depends not only on its protonophoric activity but also on the inhibition of the process (1).  相似文献   

3.
Apart from the symptoms of poisoning which the fluorinated arylalkylsulphonamides share with the classical protonphore and uncoupler of oxidative phosphorylation, carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP), the direct correlation between the lipophilic weak acid properties of these chemicals and their biological activity suggests that permeation of the inner mitochondrial membrane could be the initial step in the molecular mechanism of their biological activity. Mitochondria isolated from the livers of rats intraperitoneally exposed to varying doses (0–80 mg/kg body wt.) of perfluidone (1,1,1-trifluoro-N-(2 methyl-4-(phenylsulphonyl)phenyl methanesulphonamide), a fluorinated arylalkylsulphonamide pesticide, exhibit the following dose-dependent features: (i) increased state-4 respiration: stimulation being maximal (≥400%) at 80 mg perfluidone per kg body wt.), (ii) release of respiratory control by ADP: least respiratory control ratios (RCRs) (≤1.2) were obtained at 80 mg perfluidone per kg body wt., (iii) reduced ADP/O ratios, (iv) increased mitochondrial passive swelling, (vi) reduced rates of mitochondrial proton ejection during succinate oxidation, (vi) reduced rates of respiration-dependent Ca2+ accumulation and (vii) an enhanced oligomycin-sensitive ATPase action. These features which are qualitatively identical to those of the classical protonophore FCCP, suggest that permeation of the inner mitochondrial membrane by perfluidone is accompanied by a movement of protons into the matrix such that the proton motive force required for ATP synthesis and ion transport becomes small or not formed at all.  相似文献   

4.
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.  相似文献   

5.
Cultured rat cerebellar granule neurons were incubated with low nanomolar concentrations of the protonophore carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) to test the hypothesis that 'mild uncoupling' could be neuroprotective by decreasing oxidative stress. To quantify the uncoupling, respiration and mitochondrial membrane potential (Deltapsi(m)) were determined in parallel as a function of FCCP concentration. Deltapsi(m) dropped by less than 10 mV before respiratory control was lost. Conditions for the valid estimation of matrix superoxide levels were determined from the rate of oxidation of the matrix-targeted fluorescent probe MitoSOX. No significant change in the level of matrix superoxide could be detected on addition of FCCP while respiratory control was retained, although cytoplasmic superoxide levels measured by dihydroethidium oxidation increased. 'Mild uncoupling' by 30 nmol/L FCCP did not alleviate neuronal dysregulation induced by glutathione depletion and significantly enhanced that due to menadione-induced oxidative stress. Low protonophore concentrations enhanced N-methyl-d-aspartate receptor-induced delayed calcium deregulation consistent with a decrease in the spare respiratory capacity available to match the bioenergetic demand of chronic receptor activation. It is concluded that the 'mild uncoupling' hypothesis is not supported by this model.  相似文献   

6.
Top-down control and elasticity analysis was conducted on mitochondria isolated from the midgut of the tobacco hornworm (Manduca sexta) to assess how temperature affects oxidative phosphorylation in a eurythermic ectotherm. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored at 15, 25, and 35 degrees C. State 4 respiration displayed a Q(10) of 2.4-2.7 when measured over two temperature ranges (15-25 degrees C and 25-35 degrees C). In state 3, the Q(10)s for respiration were 2.0 and 1.7 for the lower and higher temperature ranges, respectively. The kinetic responses (oxygen consumption) of the substrate oxidation system, proton leak, and phosphorylation system increased as temperature rose, although the proton leak and substrate oxidation system showed the greatest thermal sensitivity. Whereas there were temperature-induced changes in the activities of the oxidative phosphorylation subsystems, there was no change in the state 4 membrane potential and little change in the state 3 membrane potential. Top-down control analysis revealed that control over respiration did not change with temperature. In state 4, control of respiration was shared nearly equally by the proton leak and the substrate oxidation system, whereas in state 3 the substrate oxidation system exerted over 90% of the control over respiration. The proton leak and phosphorylation system account for <10% of the temperature-induced change in the state 3 respiration rate. Therefore, when the temperature is changed, the state 3 respiration rate is altered primarily because of temperature's effect on the substrate oxidation system.  相似文献   

7.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

8.
Protein kinase Cdelta (PKCdelta) is activated by stimuli that increase its tyrosine phosphorylation, including neurotransmitters that initiate fluid secretion in salivary gland (parotid) epithelial cells. Rottlerin, a compound reported to be a PKCdelta-selective inhibitor, rapidly increased the rate of oxygen consumption (QO2) of parotid acinar cells and PC12 cells. In parotid cells, this was distinct from the effects of the muscarinic receptor ligand carbachol, which promoted a sodium pump-dependent increase in respiration. Rottlerin increased the QO2 of isolated rat liver mitochondria to a level similar to that produced when oxidative phosphorylation was initiated by ADP or when mitochondria were uncoupled by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The effects of rottlerin on mitochondrial QO2 were neither mimicked nor blocked by the PKC inhibitor GF109203X. Rottlerin was not effective in blocking PKCdelta activity in vitro. Exposure of freshly isolated parotid acinar cells to rottlerin and FCCP reduced cellular ATP levels and reduced stimuli-dependent increases in tyrosine phosphorylation of PKCdelta. Neither rottlerin nor FCCP reduced stimuli-dependent PKCdelta tyrosine phosphorylation in RPG1 cells (a salivary ductal line) or PC12 cells, consistent with their dependence on glycolysis rather than oxidative phosphorylation for energy-dependent processes. These results demonstrate that rottlerin directly uncouples mitochondrial respiration from oxidative phosphorylation. Previous studies using rottlerin should be evaluated cautiously.  相似文献   

9.
Substance P (SP), a member of the tachykinin group of peptides, has been shown to augment the sensory discharge of the carotid body, an oxygen sensing chemoreceptor. In this study we present evidence that the excitatory effect of SP, in part, could arise from a direct effect of the peptide on mitochondrial oxidative phosphorylation. Measurement of the partition coefficient of SP showed that the peptide has a relatively high apolar partition, which could be consistent with its distribution across lipid bilayers and in intracellular organelles. In addition, the effects of three concentrations of SP were tested on oxygen consumption of mitochondria isolated from rat hearts. The results showed that while the lower concentration of the peptide (0.5 microM) did not affect O2 consumption, higher concentrations, i.e., 1 and 2 microM, enhanced the rate of state 4 respiration by 52 and 64%, respectively. The rate of state 3 respiration, on the other hand, was unaltered with 0.5 and 1 microM, and was only slightly decreased with 2 microM of the peptide. The ADP:O ratio was unaffected by any concentrations of SP tested. The peptide-induced effect on state 4 respiration was even more pronounced with glutamate as a respiratory substrate and in presence of K+ in the medium. These results indicate that SP, in addition to its more accepted role as a neurotransmitter or modulator in the carotid body, may elicit intracellular response by interfering directly with oxidative phosphorylation.  相似文献   

10.
The mathematical dynamic model of oxidative phosphorylation developed previously and in the accompanying paper was modified to involve isolated mitochondria conditions; it was also used to simulate state 4 --> state 3 transition in rat liver mitochondria incubated with succinate as respiratory substrate and glucose-hexokinase as an ADP-regenerating system. Changes in the respiration rate, protonmotive force and reduction level of ubiquinone and cytochrome c as well as the internal (i) and external (e) ATP/ADP ratio between state 4 and state 3 were calculated and compared with the experimental data. Flux control coefficients with respect to oxygen consumption flux for different reactions and processes of oxidative phosphorylation were simulated for different values of the respiration rate (state 4, state 3 and intermediate states). Flux control coefficients for the oxidation, phosphorylation and proton leak subsystems with respect to the oxidation, phosphorylation and proton leak fluxes for different values of the respiration rate were also calculated. These theoretical data were compared with the experimental results obtained in the frame of metabolic control analysis and the 'top-down' approach to this analysis. A good agreement was obtained. Simulated time courses of the respiration rate, the protonmotive force (Deltap) and other parameters after addition of a small amount of ADP to mitochondria in state 4 mimicked at least semiquantitatively the experimentally measured time courses of these parameters. It was concluded, therefore, that in the present stage, the model is able to reflect different properties of the oxidative phosphorylation system in a broad range of conditions fairly well, allows deeper insight into the mechanisms responsible for control and regulation of this process, and can be used for simulation of new experiments, thus inspiring experimental verification of the theoretical predictions.  相似文献   

11.
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F(1)F(0) ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium.  相似文献   

12.
Mitochondrial uncoupling protein 2 (UCP2) plays an important role in regulating energy metabolism. We previously reported that UCP2 expression in steatotic livers is increased which leads to diminished hepatic ATP stores and renders steatotic hepatocytes vulnerable to ischemic damage. In this study, reagents that inhibit the production of ATP were used to mimic an ischemic state in the liver in order to investigate the effects of decreased intracellular ATP levels on UCP2 expression in a murine hepatocyte cell line (HEP6-16). Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an oxidative phosphorylation uncoupler, was found to decrease intracellular ATP levels in a dose- and time-dependent manner. Relatively high concentrations of FCCP from 8 to 80 microM were required to reduce the intracellular concentration of ATP. The inhibitory effect of FCCP on intracellular ATP was significantly potentiated by 2-deoxy-D-glucose, an inhibitor of glycolysis that when administered alone had no negative effect on cellular ATP levels in mouse hepatocytes. Decreased intracellular ATP levels were accompanied by lower UCP2 mRNA expression. Upon removal of FCCP and/or 2-deoxy-D-glucose and reculture with normal medium, ATP and UCP2 mRNA levels returned to normal within a few hours. Mitochondrial membrane potential in HEP6-16 cells was dissipated by 80 microM FCCP but not 8 microM FCCP, suggesting that the downregulation of UCP2 expression by FCCP was not related to mitochondrial potential changes. Consequently, the in vitro manipulation of ATP stores is consistent with the in vivo observations associated with ischemia/reperfusion injury.  相似文献   

13.
Developing myocardium is more dependent on glycolysis than adult myocardium, yet the effects of selectively inhibiting glycolysis versus oxidative phosphorylation on embryonic heart function have not been well characterized. Accordingly, we investigated how selective metabolic inhibition affects membrane voltage and intracellular Ca (Ca(i)) transients in embryonic mouse hearts, including their susceptibility to arrhythmias. A total of 136 isolated embryonic mouse hearts were exposed to either 1) 2-deoxyglucose (2DG; 10 mM) or iodoacetate (IAA; 0.1 mM) with 10 mM pyruvate in place of glucose to selectively inhibit glycolysis or 2) the mitochondrial uncoupler protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP; 500 nM) with 10 mM glucose present to selectively inhibit oxidative phosphorylation. Using confocal imaging, we found that mitochondrial membrane potential monitored with tetramethylrhodamine methyl ester (200 nM) remained stable with 2DG or IAA but depolarized within 5 min after exposure to FCCP. IAA and FCCP decreased heart rate, inhibited Ca(i) transient amplitude, shortened action potential duration at 80% repolarization (APD(80)), and prolonged atrioventricular conduction time to similar extents. Although 2DG decreased heart rate and Ca(i) transient amplitude, it did not significantly affect APD(80) and AV conduction time. In addition, spontaneous arrhythmias occurred in 77 of 136 embryonic hearts (57%) after exposure to IAA (28/53) or FCCP (49/83). There were no significant differences in the types or incidence of arrhythmias induced by IAA and FCCP. These data support the idea that both glycolysis and oxidative phosphorylation play critical metabolic roles in regulating cardiac function in the embryonic mouse heart.  相似文献   

14.
Control over oxidative phosphorylation by purified potato mitochondria was determined using the top-down approach of metabolic control analysis. The control over the respiration rate, phosphorylation rate, proton-leak rate and proton motive force exerted by the respiratory chain, phosphorylation reactions and the proton leak were measured over a range of phosphorylation rates from resting (state 4) to maximal (state 3). These rates were obtained by adding different amounts of hexokinase in the presence of glucose, or different amounts of oligomycin in the presence of ADP. The respiratory substrate was NADH or succinate, both of which feed electrons directly to ubiquinone. The rate of oxygen consumption by the alternative oxidase pathway was negligible with NADH as substrate but was measurable with succinate and was subtracted. Control over the respiration rate in potato mitochondria was predominantly exerted by the respiratory chain at all rates except close to state 4, where control by the proton leak was equally or more important. For oxidation of NADH, the flux control coefficient over the respiration rate exerted by the respiratory chain in state 3 was between 0.8 and 1.0, while in state 4, control over the respiration rate was shared about equally between the chain and the proton leak. The control over the phosphorylation rate was predominantly exerted by the respiratory chain, although at low rates control by the phosphorylation system was also important. For oxidation of NADH, the flux control coefficient over the phosphorylation rate exerted by the respiratory chain in state 3 was 0.8-1.0, while near state 4 the flux control coefficients over the phosphorylation rate were about 0.8 for the phosphorylation system and 0.25 for the chain. Control over the proton leak rate was shared between the respiratory chain and the proton leak; the phosphorylation system had negative control. For oxidation of NADH, the flux control coefficients over the leak rate in state 3 were 1.0 for the leak, 0.4 for the chain and -0.4 for the phosphorylation system, while in state 4 the flux control coefficients over leak rate were about 0.5 for the leak and 0.5 for the chain. Control over the magnitude of the protonmotive force was small, between -0.2 and +0.2, reflecting the way the system operates to keep the protonmotive force fairly constant; the respiratory chain and the phosphorylation system had equal and opposite control and there was very little control by the proton leak except near state 4.  相似文献   

15.
Vulnerability of mitochondrial Complex I to oxidative stress determines an organism's lifespan, pace of aging, susceptibility to numerous diseases originating from oxidative stress and certain mitopathies. The mechanisms involved, however, are largely unknown. We used confocal microscopy and fluorescent probe MitoSOX to monitor superoxide production due to retarded forward electron transport in HEPG2 cell mitochondrial Complex I in situ. Matrix-released superoxide production, the un-dismuted surplus (J(m)) was low in glucose-cultivated cells, where an uncoupler (FCCP) reduced it to half. Rotenone caused a 5-fold J(m) increase (AC(50) 2 microM), which was attenuated by uncoupling, membrane potential (DeltaPsi(m)), and DeltapH-collapse, since addition of FCCP (IC(50) 55 nM), valinomycin, and nigericin prevented this increase. J(m) doubled after cultivation with galactose/glutamine (i.e. at obligatory oxidative phosphorylation). A hydrophobic amiloride that acts on the ND5 subunit and inhibits Complex I H(+) pumping enhanced J(m) and even countered the FCCP effect (AC(50) 0.3 microM). Consequently, we have revealed a new principle predicting that Complex I produces maximum superoxide only when both electron transport and H(+) pumping are retarded. H(+) pumping may be attenuated by high protonmotive force or inhibited by oxidative stress-related mutations of ND5 (ND2, ND4) subunit. We predict that in a vicious cycle, when oxidative stress leads to higher fraction of, e.g. mutated ND5 subunits, it will be accelerated more and more. Thus, inhibition of Complex I H(+) pumping, which leads to oxidative stress, appears to be a missing link in the theory of mitochondrial aging and in the etiology of diseases related to oxidative stress.  相似文献   

16.
A study is presented of the effect of acidic uncouplers and oligomycin on energy-linked and passive proton translocation, oxidative phosphorylation, and energy-linked nicotinamide-adenine-nucleotide transhydrogenase in EDTA submitochondrial particles from beef-heart. A flow potentiometric technique has been applied to resolve the kinetics of the initial rapid phase of the redox proton pump. Rapid kinetics analysis shows that carbonyl-cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) does not exert any direct effect on redox-linked active proton transport. The uncoupling action of FCCP on oxidative phosphorylation and energy-linked transhydrogenase is shown to be quantitatively accounted for by its promoting effect of passive proton-diffusion across the mitochondrial membrane. Oligomycin depresses passive proton diffusion in EDTA sonic particles and this effect accounts for the coupling action exerted by the antibiotic on oxidative phosphorylation and energy-linked transhydrogenase. In fact, rapid kinetic analysis demonstrates that oligomycin does not directly affect the redox-linked proton pump. The present results show that there does not exist any labile intermediate in the redox-linked proton pump which is sensitive to acidic uncouplers.  相似文献   

17.
Roz N  Rehavi M 《Life sciences》2003,73(4):461-470
Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.  相似文献   

18.
The yield of oxidative phosphorylation in isolated tomato fruit mitochondria depleted of free fatty acids remains constant when respiratory rates are decreased by a factor of 3 by the addition of n-butyl malonate. This constancy makes the determination of the contribution of the linoleic acid-induced energy-dissipating pathway by the ADP/O method possible. No decrease in membrane potential is observed in state 3 respiration with increasing concentration of n-butyl malonate, indicating that the rate of ATP synthesis is steeply dependent on membrane potential. Linoleic acid decreases the yield of oxidative phosphorylation in a concentration-dependent manner by a pure protonophoric process like that in the presence of FCCP. ADP/O measurements allow calculation of the part of respiration leading to ATP synthesis and the part of respiration sustained by the dissipative H(+) re-uptake induced by linoleic acid. Respiration sustained by this energy-dissipating process remains constant at a given LA concentration until more than 50% inhibition of state 3 respiration by n-butyl malonate is achieved. The energy dissipative contribution to oxygen consumption is proposed to be equal to the protonophoric activity of plant uncoupling protein divided by the intrinsic H(+)/O of the cytochrome pathway. It increases with linoleic acid concentration, taking place at the expense of ADP phosphorylation without an increase in the respiration.  相似文献   

19.
The maximal capacity of the mitochondrial electron transport system (ETS) in intact cells is frequently estimated by promoting protonophore-induced maximal oxygen consumption preceded by inhibition of oxidative phosphorylation by oligomycin. In the present study, human glioma (T98G and U-87MG) and prostate cancer (PC-3) cells were titrated with different concentrations of the protonophore CCCP to induce maximal oxygen consumption rate (OCR) within respirometers in a conventional growth medium. The results demonstrate that the presence of oligomycin or its A-isomer leads to underestimation of maximal ETS capacity. In the presence of oligomycin, the spare respiratory capacity (SRC), i.e., the difference between the maximal and basal cellular OCR, was underestimated by 25 to 45%. The inhibitory effect of oligomycin on SRC was more pronounced in T98G cells and was observed in both suspended and attached cells. Underestimation of SRC also occurred when oxidative phosphorylation was fully inhibited by the ATP synthase inhibitor citreoviridin. Further experiments indicated that oligomycin cannot be replaced by the adenine nucleotide translocase inhibitors bongkrekic acid or carboxyatractyloside because, although these compounds have effects in permeabilized cells, they do not inhibit oxidative phosphorylation in intact cells. We replaced CCCP by FCCP, another potent protonophore and similar results were observed. Lower maximal OCR and SRC values were obtained with the weaker protonophore 2,4-dinitrophenol, and these parameters were not affected by the presence of oligomycin. In permeabilized cells or isolated brain mitochondria incubated with respiratory substrates, only a minor inhibitory effect of oligomycin on CCCP-induced maximal OCR was observed. We conclude that unless a previously validated protocol is employed, maximal ETS capacity in intact cells should be estimated without oligomycin. The inhibitory effect of an ATP synthase blocker on potent protonophore-induced maximal OCR may be associated with impaired metabolism of mitochondrial respiratory substrates.  相似文献   

20.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号