首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of cholesteryl oleate on the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol was determined in monolayers of egg phosphatidylcholine at a constant surface pressure of 24 mN m-1. The phospholipid monolayers contained 1.0 to 7.5 mol % trioleoylglycerol and various amounts (0 to 20 mol %) of cholesteryl oleate. The initial rates of trioleoylglycerol hydrolysis were determined with lipoprotein lipase purified from bovine milk. In phospholipid monolayers containing 5.0 or 7.5 mol % trioleoylglycerol, the further addition of cholesteryl oleate caused a decrease in lipoprotein lipase activity. In contrast, addition of cholesteryl oleate to phospholipid monolayers containing 1.0 or 2.5 mol % trioleoylglycerol enhanced enzyme activity; a 3-fold enhancement was observed with 5.0-7.5 mol % cholesteryl oleate. Based on force-area measurements, the cholesteryl ester-mediated decrease in lipoprotein lipase activity observed at high substrate concentrations may be explained by displacement of trioleoylglycerol from the interface, thereby reducing the interfacial trioleoylglycerol concentration available for enzyme catalysis. One explanation for the cholesteryl oleate-mediated enhancement of lipoprotein lipase activity at low trioleoylglycerol concentrations is that the additional spreading of cholesteryl oleate disrupts microemulsions of trioleoylglycerol, thereby increasing the effective monomer substrate concentration available for enzyme catalysis. Based on these monolayer studies with model systems, we suggest that the relative amount of cholesteryl esters in plasma triacylglycerol-rich lipoproteins plays a regulatory role in determining the rate at which triacylglycerols are cleared from the circulation.  相似文献   

2.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

3.
Lipid emulsions were prepared with a similar size and lipid composition to natural lymph chylomicrons, but in which the surface phospholipid was either egg phosphatidylcholine, dioleoyl-, dimyristoyl-, dipalmitoyl- or 1-palmitoyl-2-oleoylphosphatidylcholine (EYPC, DOPC, DMPC, DPPC or POPC). When injected into the bloodstream of conscious rats, the emulsions containing EYPC or POPC were metabolized similarly to natural chylomicrons, consistent with rapid lipoprotein lipase-mediated hydrolysis of triacylglycerols, followed by hepatic uptake of the remnants derived from the emulsions. Phospholipids from the injected emulsions were removed more slowly and became associated with the high-density lipoprotein fractions of the plasma. Emulsions containing DPPC were metabolized differently. Triacylglycerols disappeared very slowly from plasma, indicating lack of hydrolysis by lipoprotein lipase, and phospholipid radioactivity did not transfer to high-density lipoprotein. With emulsions containing DMPC, the plasma removal rates for emulsion triacylglycerols and cholesteryl esters were fast, but phospholipid radioactivity failed to transfer to the high-density lipoprotein fractions of plasma. With DOPC emulsions, clearances were slower than EYPC or POPC emulsions, but transfer to high-density lipoproteins was efficient. Therefore, an unsaturated chain at the glycerol 2-position was necessary for rapid hydrolysis by lipoprotein lipase and for efficient transfer of phospholipids to high-density lipoproteins. With an unsaturated chain at the glycerol 2-position, a saturated chain at the glycerol 1-position optimized the rate of remnant removal from the plasma.  相似文献   

4.
Hydrolysis of the emulsified mixture of short-chain triacylglycerols by porcine pancreatic lipase in the presence of procolipase and micellar sodium taurodeoxycholate has been studied. Increase in the content of tributyrin and trioctanoin in the mixture with triacetin had highly cooperative effects on the formation of the interfacial lipase procolipase complex. Abrupt enhancement of the complex stability was observed in the presence of 0.4-0.6 mol mol-1 of tributyrin or 0.58 mol mol-1 of trioctanoin in the substrate phase. The affinity of lipase towards interfacially bound procolipase for the trioctanoin containing 0.07-0.42 mol mol-1 of triacetin was approximately three times higher than that for pure trioctanoin. The cooperative processes involved in complex formation did not contribute to the affinity of the interfacial lipase/(pro)colipase complex towards substrate molecules and its catalytic activity.  相似文献   

5.
Inhibition of human and rat lipoprotein lipase by high-density lipoprotein   总被引:1,自引:0,他引:1  
The hydrolysis in vitro of preactivated Intralipid (an artificial triacylglycerol-phospholipid emulsion) by rat adipose tissue lipoprotein lipase is inhibited by rat high-density lipoprotein (HDL). The aim of this work was to investigate whether human lipoprotein lipase was also inhibited, the mechanism of inhibition of the rat enzyme by HDL, and the role of the various individual apolipoproteins. Both human and rat lipoprotein lipase from post-heparin plasma are inhibited by HDL. This inhibition is considerably decreased if the HDL is first made 'apolipoprotein poor' by removal of some transferable apolipoproteins. In contrast, both native and apolipoprotein poor HDL inhibit the hydrolysis of Intralipid by rat hepatic lipase. Apolipoproteins C and E, either free in solution or attached to lipid vesicles, inhibit the hydrolysis of activated Intralipid by rat lipoprotein lipase to a maximum of 85% and 50%, respectively. Apolipoprotein A attached to vesicles gives little inhibition. HDL apolipoprotein and apolipoprotein C compete with the substrate for binding to lipoprotein lipase with apolipoprotein C having a higher affinity for the enzyme than HDL apolipoprotein. The inhibition of lipoprotein lipase by HDL can be explained by the association of the constituent apolipoproteins, in particular apolipoprotein C, with the enzyme so that there is less enzyme available to act on substrate.  相似文献   

6.
The effects of various detergents and pH on the interfacial binding and activity of two fungal lipases from Yarrowia lipolytica (YLLIP2) and Thermomyces lanuginosus (TLL) were investigated using trioctanoin emulsions as well as monomolecular films spread at the air-water interface. Contrary to TLL, YLLIP2 was found to be more sensitive than TLL to interfacial denaturation but it was protected by detergent monomers and lowering the temperature. At pH 7.0, both the interfacial binding and the activities on trioctanoin of YLLIP2 and TLL were inhibited by sodium taurodeoxycholate (NaTDC). At pH 6.0, however, YLLIP2 remained active on trioctanoin in the presence of NaTDC, whereas TLL did not. YLLIP2 activity on trioctanoin was associated with strong interfacial binding of the enzyme to trioctanoin emulsion, whereas TLL was mostly detected in the water phase. The combined effects of bile salts and pH on lipase activity were therefore enzyme-dependent. YLLIP2 binds more strongly than TLL at oil-water interfaces at low pH when detergents are present. These findings are particularly important for lipase applications, in particular for enzyme replacement therapy in patients with pancreatic enzyme insufficiency since high detergent concentrations and highly variable pH values can be encountered in the GI tract.  相似文献   

7.
1. Lipoprotein lipase (EC 3.1.1.34), which was previously shown to bind to immobilized heparin, was now found to bind also to heparan sulphate and dermatan sulphate and to some extent to chondroitin sulphate. 2. The relative binding affinities were compared by determining (a) the concentration of NaCl required to release the enzyme from polysaccharide-substituted Sepharose; (b) the concentration of free polysaccharides required to displace the enzyme from immobilized polysaccharides; and (c) the total amounts of enzyme bound after saturation of immobilized polysaccharides. By each of these criteria heparin bound the enzyme most efficiently, followed by heparan sulphate and dermatan sulphate, which were more efficient than chondroitin sulphate. 3. Heparin fractions with high and low affinity for antithrombin, respectively, did not differ with regard to affinity for lipoprotein lipase. 4. Partially N-desulphated heparin (40–50% of N-unsubstituted glucosamine residues) was unable to displace lipoprotein lipase from immobilized heparin. This ability was restored by re-N-sulphation or by N-acetylation; the N-acetylated product was essentially devoid of anticoagulant activity. 5. Partial depolymerization of heparin led to a decrease in ability to displace lipoprotein lipase from heparin–Sepharose; however, even fragments of less than decasaccharide size showed definite enzyme-releasing activity. 6. Studies with hepatic lipase (purified from rat post-heparin plasma) gave results similar to those obtained with milk lipoprotein lipase. However, the interaction between the hepatic lipase and the glycosaminoglycans was weaker and was abolished at lower concentrations of NaCl. 7. The ability of the polysaccharides to release lipoprotein lipase to the circulating blood after intravenous injection into rats essentially conformed to their affinity for the enzyme as evaluated by the experiments in vitro.  相似文献   

8.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

9.
C J Fielding 《Biochemistry》1976,15(4):879-884
The kinetic constants for membrane-supported lipoprotein lipase have been determined for the enzyme active in lipoprotein triglyceride catabolism in perfused heart and adipose tissues, using a nonrecirculating system. Heart endothelial lipoprotein lipase reacted as a single population of high-affinity substrate binding sites (Km' 0.07 mM triglyceride). Km' (apparent Michaelis constant for the supported enzyme species) was independent of flow rate and the enzyme was rapidly released by heparin, suggestive of a superficial membrane binding site. Lipoprotein lipase active in perfused adipose tissue had significantly different kinetic properties, including a low substrate affinity (Km' 0.70 mM triglyceride), diffusion dependence of Km' at low flow rates, and slow release of enzyme by heparin. Adipose tissue may contain a small proportion of high affinity sites. While only a small proportion of total heart tissue lipoprotein lipase was directly active in triglyceride hydrolysis, this study suggests that the major part of lipoprotein lipase in adipose tissue may be involved in the hydrolysis of circulating lipoprotein triglyceride.  相似文献   

10.
Most lipid emulsions for parenteral feeding of premature infants are based on long-chain triacylglycerols (LCTs), but inclusion of medium-chain triacylglycerols (MCTs) might provide a more readily oxidizable energy source. The influence of these emulsions on fatty acid composition and metabolism was studied in 12 premature neonates, who were randomly assigned to an LCT emulsion (control) or an emulsion with a mixture of MCT and LCT (1:1). On study day 7, all infants received [13C]linoleic (LA) and [13C]alpha-linolenic acid (ALA) tracers orally. Plasma phospholipid (PL) and triacylglycerol (TG) fatty acid composition and 13C enrichments of plasma PL fatty acids were determined on day 8. After 8 days of lipid infusion, plasma TGs in the MCT/LCT group had higher contents of C8:0 (0.50 +/- 0.60% vs. 0.10 +/- 0.12%; means +/- SD) and C10:0 (0.66 +/- 0.51% vs. 0.15 +/- 0.17%) than controls. LA content of plasma PLs was slightly lower in the MCT/LCT group (16.47 +/- 1.16% vs. 18.57 +/- 2.09%), whereas long-chain polyunsaturated derivatives (LC-PUFAs) of LA and ALA tended to be higher. The tracer distributions between precursors and products (LC-PUFAs) were not significantly different between groups. Both lipid emulsions achieve similar plasma essential fatty acid (EFA) contents and similar proportional conversion of EFAs to LC-PUFAs. The MCT/LCT emulsion seems to protect EFAs and LC-PUFAs from beta-oxidation.  相似文献   

11.
In the lipid metabolism pathway, dietary lipid emulsified with bile salts and phospholipids is mainly digested by pancreatic lipase into free fatty acids and monoacylglycerols. In order to study substrate recognition mechanism of a pancreatic lipase, we investigated its catalytic property toward the lipid emulsion prepared with long- or intermediate-chain acylglycerols and several physiological surfactants. When lysophosphatidylcholine (LysoPC), rather than bile salts or phospholipid, was incorporated into the lipid emulsion, it caused an increase in the Km(app) and a decrease in the Vmax(app) values in the interactions between the lipase and triacylglycerol (triolein or tricaprin). This indicated that LysoPC inhibited hydrolysis by decreasing both the substrate affinities and the catalytic activity of this lipase. Interestingly, further addition of taurodeoxycholic acid sodium salts or phospholipid completely restored the inhibitory effect of LysoPC on hydrolysis by lipase. On the other hand, the change in these kinetic values between the lipase and two 1-monoacylglycerols (1-monocaprin and 1-monoolein) were not particularly large when LysoPC was added. Particle size analysis of the lipid emulsion composed of LysoPC and triacylglycerols showed that most of the particles were less than 200 nm in size, which was smaller than the particle size in the triacylglycerol emulsions containing bile salts or phospholipid. The composition of the emulsion would affect its surface characteristics and thus contribute to changing lipase activity.  相似文献   

12.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

13.
A stable, radioactive substrate emulsion for assay of lipoprotein lipase.   总被引:39,自引:0,他引:39  
A method is described for the assay of lipoprotein lipase, using a stable, radioactive substrate emulsion. Fatty acid-labeled trioleoylglycerol was emulsified by homogenization in glycerol with lecithin as detergent. This anhydrous emulsion was stable for at least six weeks. Substrate solutions for enzyme assay were prepared by diluting the emulsion with buffer containing serum and albumin. The fatty acid produced on hydrolysis was isolated in a one-step liquid-liquid partition system. Incubations with extracts of acetone powders from adipose tissue displayed characteristics of lipoprotein lipase activity, i.e., serum dependence and inhibition by NaCl and protamine. The method is rapid (less than 1 hour), sensitive and reproducible, and suitable for routine use.  相似文献   

14.
A monolayer technique was used to study the substrate specificity of hepatic lipase (HL) and the effect of surface pressure and apolipoproteins on hydrolysis of lipid monolayers by this enzyme. HL hydrolyzed readily phosphatidylethanolamine monolayers. Pure trioctanoylglycerol was found to be a poor substrate but when progressively diluted with nonhydrolyzable 1,2-didodecanoylphosphatidylcholine hydrolysis of triacylglycerol by HL reached maximum at a molar ratio of 1:1 triacylglycerol to phosphatidylcholine. The activation of triacylglycerol hydrolysis was not due to altered penetration of HL. The surface pressure optimum of HL for the hydrolysis of phosphatidylethanolamine monolayers was broad between 12.5 and 25 mN/m. When apolipoprotein E was injected beneath the monolayer of phosphatidylethanolamine prior to enzyme addition, a 3-fold activation of HL was observed at surface pressures equal to or below 15 mN/m. Below surface pressures of 20 mN/m apolipoprotein E did not affect the penetration of HL into the lipid-water interface. Apolipoprotein E slightly activated the hydrolysis of triacylglycerol by HL at 10 mN/m. At a high surface pressure of 25 mN/m all apolipoproteins tested (apolipoproteins A-I, A-II, C-I, C-II, C-III, and E) inhibited the penetration into and HL activity on phosphatidylethanolamine At 18.5 mN/m all apolipoproteins except apolipoprotein E inhibited the hydrolysis of triacylglycerol in the triacylglycerol:phosphatidylcholine mixed film. Based on these results we present a hypothesis that phospholipid present in apolipoprotein E-rich high density lipoprotein-1 and triacylglycerol in intermediate density lipoprotein would be preferred substrates for HL.  相似文献   

15.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

16.
Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C.  相似文献   

17.
1. Lipoprotein lipase was purified from pig myocardium by a two-step purification procedure involving (a) the formation of an enzyme-substrate complex and (b) affinity chromatography on Sepharose which contained covalently linked heparin. The purified enzyme gave in sodium dodecyl sulphate-polyacrylamide-gel electrophoresis one main band with an apparent molecular weight of 73 000. The enzyme, which was purified 70 000-fold, had a specific activity of 860 mumol of unesterified fatty acid liberated/h per mg of protein. 2. The purified enzyme hydrolysed [14C]triolein emulsions in the absence of added cofactors but its activity was increased fivefold by adding normal human serum. Of the low-density lipoprotein apoproteins only apolipoprotein CII could be substituted for serum in activating the enzyme. This lipase had maximum activity at 0.05-0.15 M-NaCl. Heparin increased the activity of the purified enzyme twofold at low concentrations, but high concentrations inhibited. The triglyceride lipase of pig myocardium thus resembles lipoprotein lipase purified from adipose tissue and from plasma, but is clearly different from pig hepatic triglyceride lipase.  相似文献   

18.
Human milk lipoprotein lipase (LPL) was purified by heparin-Sepharose 4B affinity chromatography. The time required for the purification was approximately 2 h. The acetone-diethyl ether powder of milk cream was extracted by a 0.1% Triton X-100 buffer solution and the extract was applied to the heparin-Sepharose 4B column. The partially purified LPL eluted by heparin had a specific activity of 5120 units/mg which represented a 2500-fold purification of the enzyme. The LPL was found to be stable in the heparin solution for at least 2 days at 4 °C. This enzyme preparation was found to be free of the bile salt-activated lipase activity, esterase activity, and cholesterol esterase activity. The LPL had no demonstrable basal activity with emulsified triolein in the absence of a serum cofactor. The enzyme was activated by serum and by apolipoprotein C-II. The application of milk LPL to studies on the in vitro degradation of human very low density lipoproteins can result in a 90–97% triglyceride hydrolysis. The LPL degraded very low density lipoprotein triglyceride and phospholipid without any effect on cholesterol esters. Of the partial glycerides potentially generated by lipolysis with milk LPL, only monoglycerides were present in measurable amounts after 60 min of lipolysis. These results show that the partially purified human milk LPL with its high specific activity and ease of purification represents a very suitable enzyme preparation for studying the kinetics and reaction mechanisms involved in the lipolytic degradation of human triglyceride-rich lipoproteins.  相似文献   

19.
The structural similarities between the C-terminal domain of human pancreatic lipase (C-HPL) and C2 domains suggested a similar function, the interaction with lipids. The catalytic N-terminal domain (N-HPL) and C-HPL were produced as individual proteins, and their partitioning between the water phase and the triglyceride-water interface was assessed using trioctanoin emulsions (TC8). N-HPL did not bind efficiently to TC8 and was inactive. C-HPL did bind to TC8 and to a phospholipid monolayer with a critical surface pressure of penetration similar to that of HPL (15 mN m(-1)). These experiments, performed in the absence of colipase and bile salts, support an absolute requirement of C-HPL for interfacial binding of HPL. To refine our analysis, we determined the contribution to lipid interactions of a hydrophobic loop (beta 5') in C-HPL by investigating a HPL mutant in which beta 5' loop hydrophobicity was increased by introducing the homologous lipoprotein lipase (LPL) beta 5' loop. This mutant (HPL-beta 5'LPL) penetrated into phospholipid monolayers at higher surface pressures than HPL, and its level of binding to TC8 was higher than that of HPL in the presence of serum albumin (BSA), an inhibitory protein that competes with HPL for interfacial adsorption. The beta 5' loop of LPL is therefore tailored for an optimal interaction with the surface of triglyceride-rich lipoproteins (VLDL and chylomicrons) containing phospholipids and apoproteins. These observations support a major contribution of the beta 5' loop in the interaction of LPL and HPL with their respective substrates.  相似文献   

20.
In the process of lipoprotein lipolysis, masses of fatty acid are generated at the surface of the lipoprotein. The newly generated fatty acid may at least partly redistribute from the site of lipolysis to phospholipid-rich membranes and to albumin. We have studied the distribution of [1-13C]oleic acid in model systems consisting of chylomicron-like triacylglycerol-rich emulsions, unilamellar phosphatidylcholine vesicles, and bovine serum albumin. By using high resolution 13C NMR spectroscopy it was possible to distinguish fatty acid in each compartment (emulsion, vesicle, albumin) and quantitate the fatty acid distribution under various conditions of lipid compartment concentration and aqueous pH. When emulsions and vesicles were present in equivalent mass amounts, fatty acid exhibited a profound preference for the lipid bilayers. The release of oleic acid to phospholipid bilayers was presumably also a function of its high molar stoichiometry (5:1) with the albumin present. More equitable distributions of fatty acid between vesicles and emulsions were seen when higher concentrations of emulsion were used. The distribution of fatty acid between compartments was in good agreement with predictions made using the apparent ionization constant, expressed as pKapp, of 7.5 and the surface to core (phospholipid to triacylglycerol) distribution coefficient of 7.0, measured for unionized oleic acid in chylomicron particles (Spooner, P. J. R., Bennett Clark, S., Gantz, D. L., Hamilton, J. A., and Small, D. M. (1988) J. Biol. Chem. 263, 1444-1455). These results indicate that the affinities of fatty acid for phospholipid bilayer and chylomicron-like emulsion surfaces are equivalent. Redistribution of lipolytically generated fatty acid from chylomicron surface to cell membrane may simply be driven by the predominant quantity of the cell membrane surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号