首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A successive C-terminal amino acid truncation reaction of peptides and proteins with a vapor generated from a low-concentrated perfluoric acid in acetic anhydride is presented. The reaction products were analyzed with matrix-assisted laser desorption/ionization-time of flight mass-spectrometry giving molecular mass ions of the C-terminal truncated peptides or proteins from which the C-terminal sequence information can be deduced. Acetylation reaction preceded the truncation reaction in order to protect the amino groups and other reactive groups in peptides and proteins, and after the truncation reaction, hydration reaction was carried out to afford cleaner mass spectra.  相似文献   

2.
J M Bailey  J E Shively 《Biochemistry》1990,29(12):3145-3156
Proteins and peptides can be sequenced from the carboxy terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory indicated that the use of trimethylsilyl isothiocyanate (TMS-ITC) as a coupling reagent significantly improved the yields and reaction conditions and reduced the number of complicating side products [Hawke et al. (1987) Anal. Biochem. 166, 298]. The present study further explores the conditions for formation of the peptidylthiohydantoins by TMS-ITC and examines the cleavage of these peptidylthiohydantoin derivatives into a shortened peptide and thiohydantoin amino acid derivative. Schizophrenia-related peptide (Thr-Val-Leu) was used as a model peptide and was treated with acetic anhydride and TMS-ITC at 50 degrees C for 30 min, and the peptidylthiohydantoin derivatives were isolated by reverse-phase HPLC and characterized by FAB-MS. The purified derivatives were subjected to a variety of cleavage conditions, and rate constants for hydrolysis were determined. Hydrolysis with acetohydroxamate as reported originally by Stark [(1968) Biochemistry 7, 1796] was found to give excellent cleavage of the terminal thiohydantoin amino acid, but also led to the formation of stable hydroxamate esters of the shortened peptide which are poorly suited for subsequent rounds of degradation. Hydrolysis with 2% aqueous triethylamine under mild conditions (1-5 min at 50 degrees C) was found to be more suitable for carboxy-terminal sequence analysis by the thiocyanate method. The shortened peptide, which could be isolated and subjected to a second round of degradation, and the released thiohydantoin amino acid are formed in good yield (90-100%). Several other small peptides containing 15 different C-terminal amino acid side chains were also investigated in order to examine any interfering reactions that might occur when these side chains are encountered in a stepwise degradation using the thiocyanate chemistry. Quantitative yields of peptidylthiohydantoins were obtained for all the amino acids examined with the following exceptions: low yields were obtained for C-terminal Glu or Thr, and no peptidylthiohydantoins were obtained for C-terminal Pro or Asp. Asparagine was found to form cyclic imides (64%) at the penultimate position (C-2) during hydrolysis of the peptidylthiohydantoins by 2% aqueous triethylamine. Cleavage of C-terminal Asn under these conditions led to the formation of the expected shortened peptide (69%), but also to the formation of a shortened peptide (31%) with a C-terminal amide. Problems with Glu and Thr could be solved by minimizing the reaction time with acetic anhydride.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In previous studies aimed at the sequencing of peptides and proteins from the carboxy terminus, we have derivatized the C-terminus to a thiohydantoin using acetic anhydride and trimethylsilylisothiocyanate (TMS-ITC) and subsequently hydrolyzed it to form a shortened peptide capable of further degradation and an amino acid thiohydantoin which can be identified by reverse-phase HPLC. Current limitations to this chemistry include an inability to derivatize proline and low yields with asparagine and aspartic acid residues (Baileyet al., 1992). In an attempt to solve some of these problems, we have investigated the use of reagents other than acetic anhydride for the activation of the C-terminal carboxylic acid. These include 2-fluoro-1-methylpyridinium tosylate, 2-chloro-1-methylpyridinium iodide, and acetyl chloride. Addition of TMS-ITC to peptides activated by the 2-halo-pyridinium salts formed the expected peptidylthiohydantoin, but in addition formed a peptide chemically modified at the C-terminus which was blocked to C-terminal sequence analysis. This derivative was not obtained when either acetic anhydride or acetyl chloride was used for activation. Formation of this derivative was found to require the presence of an isothiocyanate reagent in addition to the halo-pyridinium salt. Sodium thiocyanate, TMS-ITC, and a new reagent for thiohydantoin synthesis, tributyltinisothiocyanate (TBSn-ITC), were all found to be capable of forming this analogue. Structural elucidation of the C-terminally modified amino acid revealed it to be a 2-imino-pyridinium analogue. Formation of this C-terminally blocked peptide could be minimized by the use of the 2-chloro-pyridinium reagent, rather than the 2-fluoro reagent, and by performing the reaction at a temperature of 50°C or lower. The 2-halo-pyridinium reagents offer potential advantages over the use of acetic anhydride for activation of the C-terminal carboxylic acid. These include: milder reaction conditions, faster reaction times, and the ability to sequence through C-terminal aspartic acid. The TBSn-ITC reagent was found to be comparable to TMS-ITC for formation of peptidylthiohydantoins.  相似文献   

4.
Summary C-terminal amino acid sequence analysis seemed to be established procedure, as the counterpart of Edman's N-terminal sequencing method. However, poor recovery of the C-terminal amino acids in the reaction in homogeneous solution suggested further improvement of the method. In the present study, N-terminal amino acid was fixed covalently to the controlled pore glass (CPG) beads and the C-terminal amino acid was activated (by treating with acetic anhydride), coupled with thiocyanate to form thiohydantoin (TH) ring at the C-terminus. Then, the C-terminal amino acid was split off as the corresponding TH derivative, and analyzed by HPLC. Hydrolysis of the TH derivative was achieved at 60°C in the presence of 2 M HC1 for 2 h. Solid phase fixed peptide was washed simply with acetone, and dried for the next cycle of the reaction. So far obtained results in the heterogeneous mixture are not satisfactory in terms of the recovery of the C-terminal TH, and improvement of the recovery and further steps are under progress.  相似文献   

5.
Proteins and peptides can be sequenced from the carboxy-terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory have focused on the automation of the thiocyanate chemistry using acetic anhydride and trimethylsilylisothiocyanate (TMS-ITC) to derivatize the C-terminal amino acid to a thiohydantoin and sodium trimethylsilanolate for specific hydrolysis of the derivatized C-terminal amino acid (Bailey, J.M., Shenoy, N.R., Ronk, M., & Shively, J.E., 1992, Protein Sci. 1, 68-80). A major limitation of this approach was the need to activate the C-terminus with acetic anhydride. We now describe the use of a new reagent, diphenyl phosphoroisothiocyanatidate (DPP-ITC) and pyridine, which combines the activation and derivatization steps to produce peptidylthiohydantoins. Previous work by Kenner et al. (Kenner, G.W., Khorana, H.G., & Stedman, R.J., 1953, Chem. Soc. J., 673-678) with this reagent demonstrated slow kinetics. Several days were required for complete reaction. We show here that the inclusion of pyridine was found to promote the formation of C-terminal thiohydantoins by DPP-ITC resulting in complete conversion of the C-terminal amino acid to a thiohydantoin in less than 1 h. Reagents such as imidazole, triazine, and tetrazole were also found to promote the reaction with DPP-ITC as effectively as pyridine. General base catalysts, such as triethylamine, do not promote the reaction, but are required to convert the C-terminal carboxylic acid to a salt prior to the reaction with DPP-ITC and pyridine. By introducing the DPP-ITC reagent and pyridine in separate steps in an automated sequencer, we observed improved sequencing yields for amino acids normally found difficult to derivatize with acetic anhydride/TMS-ITC. This was particularly true for aspartic acid, which now can be sequenced in yields comparable to most of the other amino acids. Automated programs are described for the C-terminal sequencing of peptides covalently attached to carboxylic acid-modified polyethylene and proteins (200 pmol to 5 nmol) noncovalently applied to Zitex (porous Teflon). The generality of our automated C-terminal sequencing methodology was examined by sequencing model peptides containing all 20 of the common amino acids. All of the amino acids tested were found to sequence in good yield except for proline, which was found not to be capable of derivatization. In spite of this limitation, the methodology should be a valuable tool for the C-terminal sequence analysis of peptides and proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Weber A  Jung K 《Biochemistry》2006,45(6):1620-1628
Universal stress proteins (USPs) are abundant and widely distributed proteins. Even so, their mode of function is hardly understood. This study focuses on UspG (UP12) of Escherichia coli, which belongs to the UspFG subfamily. Resolution of UspG by two-dimensional gel electrophoresis uncovered a posttranslational modification during its overexpression in E. coli. One isoform represented the adenylated/phosphorylated state of UspG. In vitro experiments with His-tagged UspG revealed intrinsic autophosphorylation and autoadenylation activity. Moreover, covalently bound AMP could be released from UspG by piperidine treatment and subsequent thin-layer chromatography. UspG was characterized as a dimer, a property that got lost in a C-terminal truncated UspG. Moreover, the C-terminal part was found to be important for structural stability, because the truncation of six C-terminal amino acids resulted in a protein that was further truncated by 18 amino acids in vivo. The truncated UspG was still enzymatically active, albeit the activities were significantly reduced.  相似文献   

7.
The reaction of cyanate with C-terminal carboxyl groups of peptides in aqueous solution was considered as a potential pathway for the abiotic formation of peptide bonds under the condition of the primitive Earth. The catalytic effect of dicarboxylic acids on cyanate hydrolysis was definitely attributed to intramolecular nucleophilic catalysis by the observation of the 1H-NMR signal of succinic anhydride when reacting succinic acid with KOCN in aqueous solution (pH 2.2–5.5). The formation of amide bonds was noticed when adding amino acids or amino acid derivatives into the solution. The reaction of N-acyl aspartic acid derivatives was observed to proceed similarly and the scope of the cyanate-promoted reaction was analyzed from the standpoint of prebiotic peptide formation. The role of cyanate in activating peptide C-terminus constitutes a proof of principle that intramolecular reactions of adducts of peptides C-terminal carboxyl groups with activating agents represent a pathway for peptide activation in aqueous solution, the relevance of which is discussed in connexion with the issue of the emergence of homochirality.  相似文献   

8.
Barley α-amylase was purified by ammonium sulfate fraction, ion-exchange, ultrafiltration, and gel filtration to homogeneity. The purified enzyme was partially digested with trypsin, and the reaction mixture was applied to a cyclohepta-amylose epoxy Sepharose 6B column. Bound fragments were eluted by free cyclohepta-amylose, lyophilized, and separated on Tricine gels. Four fragments were shown to interact with β-cyclodextrin. The fragment that could be identified on the gel with the lowest molecular weight (11 kDa) was electroblotted onto PVDF membrane for sequencing. The N-terminal sequence of this fragment was determined with the N-terminal amino acid corresponding to Ala283 in the whole protein. The trypsin cleavage was at Lys282/Ala283 and the C-terminal cleavage occurred at Lys354/Ile355 to give a fragment size of 11 kDa as estimated by SDS-PAGE. The fragment would be located at the C-terminal region, forming a majority of the antiparallel β-sheets in domain C and the α7-and α8-helices of the (α/β)8 domain.  相似文献   

9.
Proteins L6 and L29 occupy closely adjacent sites in mammalian 60-S ribosomal subparticles and are easily cross-linked by intermolecular disulfide bond formation. For locating the interacting thiols within the polypeptide chains the dissociated proteins L6 and L29 obtained from the isolated disulfide complex were subjected to S-cleavage following [14C]cyanylation of the two cysteine residues. Four split products of the [14C]cyanylated proteins were isolated by dodecylsulfate gel electrophoresis. Two of these could be identified by autoradiography as the selectively labeled C-terminal fragments. For unequivocal assignment of the fragments to the parent proteins, a simple and generally applicable method of cleaving cyanylated proteins in polyacrylamide gel for subsequent diagonal analysis was developed. The experiments indicated that the sulfhydryl group of L6 interacting with L29 is located at a distance of approximately 80 amino acid residues from the N-terminus. In the intact ribosome this sequence contains a clostripain-sensitive and trypsin-sensitive portion of the protein more or less exposed at the ribosomal surface. In the case of protein L29, the interacting sulfhydryl group was located at a distance of approximately 40 amino acid residues from the C-terminal.  相似文献   

10.
在纯乙酸溶剂中,以乙酸酐酰化消旋酪氨酸,消旋温度为90℃,L-酪氨酸和乙酸酐的摩尔比为12,每消旋1gL-酪氨酸时,溶剂乙酸的用量为5mL,效果较好。同样的方法应用于L-脯氨酸,L-苏氨酸,L-缬氨酸,L-赖氨酸,L-半胱氨酸等氨基酸,消旋率均可达到100%。  相似文献   

11.
Perfringolysin O (theta-toxin) is a pore-forming cytolysin whose activity is triggered by binding to cholesterol in the plasma membrane. The cholesterol binding activity is predominantly localized in the beta-sheet-rich C-terminal half. In order to determine the roles of the C-terminal amino acids in theta-toxin conformation and activity, mutants were constructed by truncation of the C terminus. While the mutant with a two-amino acid C-terminal truncation retains full activity and has similar structural features to native theta-toxin, truncation of three amino acids causes a 40% decrease in hemolytic activity due to the reduction in cholesterol binding activity with a slight change in its higher order structure. Furthermore, both mutants were found to be poor at in vitro refolding after denaturation in 6 M guanidine hydrochloride, resulting in a dramatic reduction in cholesterol binding and hemolytic activities. These activity losses were accompanied by a slight decrease in beta-sheet content. A mutant toxin with a five-amino acid truncation expressed in Escherichia coli is recovered as a further truncated form lacking the C-terminal 21 amino residues. The product retains neither cholesterol binding nor hemolytic activities and shows a highly disordered structure as detected by alterations in the circular dichroism and tryptophan fluorescence spectra. These results show that the C-terminal region of theta-toxin has two distinct roles; the last 21 amino acids are involved to maintain an ordered overall structure, and in addition, the last two amino acids at the C-terminal end are needed for protein folding in vitro, in order to produce the necessary conformation for optimal cholesterol binding and hemolytic activities.  相似文献   

12.
《Bioorganic chemistry》1987,15(3):262-268
N-Acetyl-S-oxalylcysteamine is formed in 70–75% yield from the reaction of acetic anhydride with Δ2-thiazoline 2-carboxylate at 25°C in near neutral aqueous solution. This reaction is believed to be a good model for how oxalyl thiolesters could be formed in vivo from the products of the suspected physiological reactions catalyzed by d-amino acid oxidase and d-aspartate oxidase. The reaction is of special significance because of current evidence that oxalyl thiolesters are important metabolic effectors.  相似文献   

13.
Microgram amounts of proteins applied to polyacrylamide gel electrophoresis were subjected to a fingerprinting procedure using a combined proteolysis-acetylation method with the aid of 14C-labeled acetic anhydride of high specific activity. After staining, gel slices were partially dried and were resoaked in a solution of a protease. After elution and acetylation, the resulting peptides were resolved in fingerprints on cellulose thin-layer chromatography plates and subjected to autoradiography with or without sensitization. Yields, completeness of fingerprinting, and possible artefacts were investigated.  相似文献   

14.
Silica particles adsorbed several kinds of human serum proteins, especially 23 kDa molecular weight protein. After SDS-PAGE of adsorbed serum proteins, gel pieces containing 23 kDa protein was cut out and set in slot of stacking gel in second SDS-PAGE following overlay of Staphylococcus aureus V8 protease. After electrophoresis, gel was subjected to electroblotting onto polyvinylidene difluoride membrane. Both bands of dye-stained 23 kDa and the peptide were cut out from membrane and analyzed for amino acid sequence. Obtained sequences agreed well with amino terminal and intramolecular sequences of human HDL-apolipoprotein, A-I.  相似文献   

15.
N-Acetylchitosan gel, a polyhydrate of chitin, and partially O-acetylated N-acetylchitosan gel were produced by a facile acetylation of chitosan with acetic anhydride in 10% acetic acid and in aqueous acetic acid/methanol at room temperature. Under the same conditions, a series of N-acylchitosan gels was produced in reaction with the other carboxylic anhydrides. The gels thus produced were colorless, transparent and rigid, and stable on heating. The gels were insoluble in cold and boiling water, formic acid, aqueous acids, and the other solvents examined. Significant changes in specific rotation occurred in the acylation of chitosan and its aggregation.  相似文献   

16.
Recombinant human nerve growth factor (rhNGF) was expressed and secreted by Chinese hamster ovary cells and purified to homogeneity using ion-exchange and reversed-phase (RP) chromatography. The isolated product was shown to be consistent with a 120-amino-acid residue polypeptide chain by amino acid composition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), RP-HPLC, and mass spectrometry and with an N-terminal sequence consistent with that expected from the cDNA for human nerve growth factor. By size-exclusion chromatography, rhNGF behaves like a noncovalent dimer. Limited enzymatic digests of the 120-residue monomer produced additional species of 118 (trypsin, removal of the C-terminal Arg119-Ala120 sequence) and 117 (trypsin plus carboxypeptidase B, removal of the C-terminal Arg118-Arg119-Ala120 sequence) residues. Each of these species was isolated by high-performance ion-exchange chromatography and characterized by amino acid and N-terminal sequence analyses, SDS-PAGE, RP-HPLC, and mass spectrometry. All three species were present in the digests as both homodimeric and heterodimeric combinations and found to be equipotent in both the chick dorsal root ganglion cell survival and rat pheochromocytoma neurite extension assays.  相似文献   

17.
Complement component C3 was isolated from the plasma of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossus L.). Fast protein liquid chromatography (FPLC) techniques, involving ion exchange and gel filtration columns, were used. The purified proteins were analysed by SDS-PAGE which showed a two-chain structure, alpha- and beta-chains, as seen in higher vertebrates. Both proteins had intra-chain thioesters located within their alpha-chains and N-terminal amino acid sequencing confirmed their identity with reference to known C3 amino acid sequences from other species. Specific antibodies were prepared against cod and halibut C3 and tested in Western blotting on sera and purified C3. The proteolytic fragmentation of C3 was tested with trypsin, pepsin, papain and the extracellular product (ECP) from the bacterium Aeromonas salmonicida ssp. achromogenes (Asa). Both trypsin and papain were successful in cleaving C3 whereas pepsin and ECP had no effect. Carbohydrate moieties were detected in the alpha- and beta-chains of cod and halibut C3 and N-linked oligosaccharides were removed from the C3 with PNGase treatment, revealing a difference in C3 glycosylation between the two species.  相似文献   

18.
Synaptic membranes from human and swine brains were solubilized with 8 M urea and the proteins were reduced and alkylated. A protein was isolated from both sources and had identical amino acid compositions and molecular weights as determined by electrophoresis on polyacrylamide-sodium dodecylsulfate gels and by ion-exchange chromatography and gel filtration on Bioglas 1000. The apparent molecular weight of the protein was 53 000 on the acrylamide-sodium dodecylsulfate gels. Neither neutral sugars nor sialic acid was a significant component of the protein. When the proteins were digested with trypsin and the resultant peptides subjected to chromatography (n-butanol/acetic acid/water) and electrophoresis (pH 3.7) the peptide maps were identical. The protein comprises 1-2 percent of the total synaptosomal protein. With regard to amino acid composition, molecular weight, peptide map characteristics, behavior on DEAE-cellulose columns, electrophoretic mobility and sugar content, the synaptic protein is quite similar to the monomer of swine tubulin.  相似文献   

19.
The luteinizing hormone isolated from sperm-whale pituitary was separated into two subunits, alpha- and beta-, by ion-exchange chromatography on sulfoethyl-Sephadex. The hormone subunits were reconstituted, carboxymethylated and cleaved by BrCN and proteolytic enzymes. In order to block tryptic hydrolysis at lysine residues the alpha-subunit was subjected to maleylation. Large-sized fragments of BrCN were cleaved by chymotrypsin and trypsin, while large-sized fragments of trypsin were split by chymotrypsin. The resulting peptides were separated by gel filtration on Sephadex, ion-exchange chromatography on Aminex A-5 and thin-layer partition chromatography on cellulose. The amino acid sequence of the peptides was determined by the Edman method, using identification of the N-terminal amino acids in a reaction with dansyl chloride or dimethylaminoazobenzene-4-isothiocyanate. It was shown that the alpha-subunit of the luteinizing hormone is a peptide chain consisting of 96 amino acid residues with covalently linked carbon chains at asparagine residues at positions 56 and 82. The N-terminal amino acid of the alpha-subunit is phenylalanine, the C-terminal amino acid is serine. The alpha-subunit is heterogeneous at the N-end, i. e. beside phenylalanine it contains threonine and trace amounts of proline, aspartate, glutamate and glycine.  相似文献   

20.
An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60 degrees C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45 degrees C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号