首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
ABSTRACT. Toxoplasma gondii is an important apicomplexan parasite of humans and other warm-blooded animals. Ponazuril is a triazine anticoccidial recently approved for use in horses in the United States. We investigated the inode of action of ponazuril against developing RH strain T. gondii tachyzoites in African green monkey kidney cells. Host cells were infected with  2.0 × 105  tachyzoites and treated with 5 μg/ml ponazuril. Cultures were fixed and examined by transmission electron microscopy 3 days after treatment. Ponazuril interfered with normal parasite division. This led to the presence of multinucleate schizonts stages. Up to six tachyzoites were observed partially budded from the surface of these schizonts. Large vacuoles developed in these schizonts and they eventually degenerated.  相似文献   

2.
Enteric protozoal infection was identified in 5 stranded California sea lions (Zalophus californianus). Microscopically, the apical cytoplasm of distal jejunal enterocytes contained multiple stages of coccidian parasites, including schizonts with merozoites and spherical gametocytes, which were morphologically similar to coccidians. By histopathology, organisms appeared to be confined to the intestine and accompanied by only mild enteritis. Using electron microscopy, both sexual (microgametocytes, macrogamonts) and asexual (schizonts, merozoites) coccidian stages were identified in enterocytes within parasitophorous vacuoles, consistent with apicomplexan development in a definitive host. Serology was negative for tissue cyst-forming coccidians, and immunohistochemistry for Toxoplasma gondii was inconclusive and negative for Neospora caninum and Sarcocystis neurona. Analysis of ITS-1 gene sequences amplified from frozen or formalin-fixed paraffin-embedded intestinal sections identified DNA sequences with closest homology to Neospora sp. (80%); these novel sequences were referred to as belonging to coccidian parasites "A," "B," and "C." Subsequent molecular analyses completed on a neonatal harbor seal (Phoca vitulina) with protozoal lymphadenitis, hepatitis, myocarditis, and encephalitis showed that it was infected with a coccidian parasite bearing the "C" sequence type. Our results indicate that sea lions likely serve as definitive hosts for 3 newly described coccidian parasites, at least 1 of which is pathogenic in a marine mammal intermediate host species.  相似文献   

3.
Sarcocystis neurona was isolated from the brain of a juvenile, male southern sea otter (Enhydra lutris nereis) suffering from CNS disease. Schizonts and merozoites in tissue sections of the otter's brain reacted with anti-S. neurona antiserum immunohistochemically. Development in cell culture was by endopolyogeny and mature schizonts were first observed at 3 days postinoculation. PCR of merozoite DNA using primer pairs JNB33/JNB54 and restriction enzyme digestion of the 1100 bp product with Dra I indicated the organism was S. neurona. Four of four interferon-gamma gene knockout mice inoculated with merozoites developed S. neurona-associated encephalitis. Antibodies to S. neurona but not Sarcocystis falcatula, Toxoplasma gondii, or Neospora caninum were present in the serum of inoculated mice. This is the first isolation of S. neurona from the brain of a non-equine host.  相似文献   

4.
A Pacific harbor seal (Phoca vitulina richardsii) was found on the central California coast with neurologic signs and labored breathing, which were unresponsive to treatment. Necropsy revealed a nonsuppurative necrotizing meningoencephalitis, a multilocular thymic cyst, and nonsuppurative cystitis and renal pyelitis. Microscopic examination revealed protozoans in the brain, thymic cyst, and bladder mucosa. Ultrastructurally, the protozoal tachyzoites were different from those of Neospora caninum, Toxoplasma gondii, and Sarcocystis neurona; the rhoptries were small and had electron-dense contents, and the organism divided by endodyogeny. Specific antibodies were not detected in serum using agglutination (N. caninum, T. gondii) and immunoblot assays (S. neurona). Immunohistochemistry for these organisms was negative. Polymerase chain reaction on brain tissue using specific primers did not amplify T. gondii deoxyribonucleic acid. The meningoencephalitis in this seal thus appears to have been caused by a novel protozoan.  相似文献   

5.
Hepatic sarcocystosis was diagnosed in a horse in association with refractory bacterial osteomyelitis and plasma cell tumor of the maxilla and hepatic salmonellosis. Gross lesions included pleural, pericardial, and peritoneal effusions, hepatomegaly, gastric ulceration, colonic edema, and proliferative tissues filling 2 maxillary dental alveoli. Histologically, liver was characterized by severe suppurative, necrotizing, periportal hepatitis, and severe periacinar necrosis. Hepatocytes frequently contained protozoal schizonts in various stages of development. In mature schizonts, merozoites were often arranged radially around a central residual body, consistent with asexual division by endopolygeny. Ultrastructural features of merozoites included an apical conoid and polar ring, anterior micronemes, central nuclei, and absence of rhoptries. These protozoa did not react to antisera raised against Neospora caninum, Sarcocystis neurona, Toxoplasma gondii, or Hammondia hammondi. The microscopic and ultrastructural characteristics and immunoreactivity of this organism are consistent with a Sarcocystis sp. other than S. neurona. This is the first report of Sarcocystis-associated hepatitis in a horse. The life cycle of this organism and source of infection are unknown.  相似文献   

6.
A putative nucleoside triphosphate hydrolase (NTPase) gene was identified in a database of expressed sequence tags (ESTs) from the apicomplexan parasite Sarcocystis neurona. Analysis of culture-derived S. neurona merozoites demonstrated a dithiol-dependent NTPase activity, consistent with the presence of a homologue to the TgNTPases of Toxoplasma gondii. A complete cDNA was obtained for the S. neurona gene and the predicted amino acid sequence shared 38% identity with the two TgNTPase isoforms from T. gondii. Based on the obvious homology, the S. neurona protein was designated SnNTP1. The SnNTP1 cDNA encodes a polypeptide of 714 amino acids with a predicted 22-residue signal peptide and an estimated mature molecular mass of 70kDa. Southern blot analysis of the SnNTP1 locus revealed that the gene exists as a single copy in the S. neurona genome, unlike the multiple gene copies that have been observed in T. gondii and Neospora caninum. Analyses of the SnNTP1 protein demonstrated that it is soluble and secreted into the culture medium by extracellular merozoites. Surprisingly, indirect immunofluorescence analysis of intracellular S. neurona revealed apical localisation of SnNTP1 and temporal expression characteristics that are comparable with the microneme protein SnMIC10. The absence of SnNTP1 during much of endopolygeny implies that this protein does not serve a function during intracellular growth and development of S. neurona schizonts. Instead, SnNTP1 may play a role in events that occur during or proximal to merozoite egress from and/or invasion into cells.  相似文献   

7.
Toxoplasma gondii-like schizonts in the tracheal epithelium of a cat   总被引:1,自引:0,他引:1  
Toxoplasma gondii-like schizonts were found in tracheal epithelium of an 8-yr-old male cat. The parasites were located in parasitophorous vacuoles within the host cell cytoplasm, divided by schizogony, contained periodic acid-Schiff-positive granules, and reacted with anti-T. gondii serum but not with anti-Neospora caninum serum. Mature schizonts were 7.0 x 5.9 microns (5-10 x 4-10 microns; n = 22) and contained 4-16 merozoites. The merozoites were approximately 5 x 1 microns.  相似文献   

8.
The ultrastructural characterisitics of four types of Toxoplasma gondii schizonts (types B, C, D and E) and their merozoites, microgamonts and macrogamonts were compared in cats killed at days 1, 2, 4 and 6 after feeding tissues cysts from the brains of mice. Schizonts, merozoites and gamonts contained most of the ultrastructural features characteristic of the phylum Apicomplexa. All four types of schizonts developed within enterocytes or intraepithelial lymphocytes. Occasionally, type B and C schizonts developed within enterocytes that were displaced beneath the epithelium into the lamina propria. Type D and E schizonts and gamonts developed exclusively in the epithelium. Tachyzoites occurred exclusively within the lamina propria. Type B schizonts formed merozoites by endodyogeny, whereas types C to E developed by endopolygeny. The parasitophorous vacuoles surrounding type B and C schizonts consisted of a single membrane, whereas those surrounding types D and E schizonts were comprised of two to four electron-dense membranes. The parasitophorous vacuole of type B schizonts had an extensive tubulovesicular membrane network (TMN); the TMN was reduced or absent in type C schizonts and completely absent in types D and E schizonts and gamonts. Type B merozoites were ultrastructurally similar to tachyzoites, except that they were slightly larger. Type C merozoites exhibited a positive periodic acid-Schiff reaction by light microscopy and ultrastructurally contained amylopectin granules. Rhoptries were labyrinthine in type B merozoites but were electron-dense in types C-E. The development of microgamonts, macrogamont and oocysts is also described.  相似文献   

9.
Neospora caninum (Apicomplexa) in an aborted equine fetus   总被引:4,自引:0,他引:4  
Tachyzoites of Neospora caninum were found in sections of lung of an equine fetus aborted 2 mo before term. Individual tachyzoites were approximately 3-5 x 2-3 microns, divided by endodyogeny, and stained positively with anti-N. caninum serum but not with anti-Toxoplasma gondii serum. Toxoplasma gondii antibody was not found in the mare's serum. This is the first report of N. caninum in a horse and indicates that N. caninum can be transmitted transplacentally in equids.  相似文献   

10.
In vitro development of Neospora caninum (Protozoa: Apicomplexa) from dogs   总被引:1,自引:0,他引:1  
The development of Neospora caninum isolated from naturally infected dogs was examined in mammalian cell cultures. Tachyzoites developed by endodyogeny when inoculated onto bovine monocyte or bovine cardiopulmonary artery endothelial cell cultures. Tachyzoites were 5.0 by 2.0 microns and had a posteriorly located nucleus. Cytopathogenic effects of parasite development consisted of the formation of holes in the cell monolayer associated with the rupture of infected host cells. Serial passage of tachyzoites was achieved by subinoculation of tachyzoites onto non-infected bovine monocyte cell cultures. It appears that N. caninum can be continuously grown in cell cultures.  相似文献   

11.
Dividing tachyzoites of Neospora caninum were 4 x 3 microns and had ultrastructural characteristics typical for the cyst-forming coccidia. Unusual ultrastructural characteristics of fully-formed tachyzoites included no micropores, 8-12 anterior and 4-6 posterior rhoptries, and a few posterior micronemes. Most tachyzoites were located free in the host cell cytoplasm; only a few occurred within a parasitophorous vacuole. Parasite multiplication appeared to be rapid because most organisms were in various stages of endodyogeny. Neural tissue cysts of N. caninum were 24.3 x 19.2 microns and contained 50-200 bradyzoites (7.3 x 1.5 microns), which lacked micropores. The cyst wall was 0.74-1.12 microns thick and consisted of the primary cyst wall (the parasitophorous vacuole membrane) and a thick granular layer with electron-dense vesicles.  相似文献   

12.
. Dividing tachyzoites of Neospora caninum were 4x3 μm and had ultrastructural characteristics typical for the cyst-forming coccidia. Unusual ultrastructural characteristics of fully-formed tachyzoites included no micropores, 8–12 anterior and 4–6 posterior rhoptries, and a few posterior micronemes. Most tachyzoites were located free in the host cell cytoplasm; only a few occurred within a parasitophorous vacuole. Parasite multiplication appeared to be rapid because most organisms were in various stages of endodyogeny. Neural tissue cysts of N. caninum were 24.3 × 19.2 μm and contained 50–200 bradyzoites (7.3 × 1.5 μm), which lacked micropores. The cyst wall was 0.74–1.12 μm thick and consisted of the primary cyst wall (the parasitophorous vacuole membrane) and a thick granular layer with electron-dense vesicles.  相似文献   

13.
The development and merozoite production of Sarcocystis falcatula and 2 isolates (SN6 and SN2) of Sarcocystis neurona were studied in various cultured cell lines inoculated with culture-derived merozoites. All 3 parasites underwent multiple cycles of schizogony in VERO cells, bovine monocytes (M617 cells), and bovine pulmonary artery endothelial cells (CPA). Sarcocystis neurona strains SN6 and SN2 formed schizonts in rat myoblasts (L6) but not in quail myoblasts (QM7); S. falcatula formed schizonts in QM7 cells but not in L6 cells. Merozoites did not develop to sarcocysts in the myoblast cells lines. During a 47-day culture period in VERO cells, SN6 produced substantially more merozoites than did SN2 or S. falcatula. M617 cells produced substantially more merozoites of SN6 than did VERO or CPA cells. During a 17-day culture period of SN6, M617 cells produced mean totals of 4.7 x 10(8) merozoites, VERO cells produced 1.9 x 10(8) merozoites, and CPA cells produced 5.9 x 10(7) merozoites. At 4-12 days after inoculation of cultured cells with SN6, M617 cells cultured in the presence of 10% fetal bovine serum (FBS) produced a mean merozoite total of 5.1 x 10(8) compared to 3.6 x 10(8) for culture medium containing 1% FBS.  相似文献   

14.
Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the functions that these proteins serve during invasion of host cells.  相似文献   

15.
In vitro Eimeria bovis sporozoites invade a wide range of cell types, and in the case of bovine cells, they may develop to first-generation schizonts. Often, however, they subsequently leave their host cell to invade a new one, which seems contrary to the classical way of infecting a cell by forming a parasitophorous vacuole. Using a standard, "cell wound assay," we show that E. bovis can invade bovine endothelial cells by breaching the plasma membrane and may again leave the surviving cell. Eimeria bovis sporozoites also infected VERO and HT29 cells but obviously without damaging the plasma membrane. The same held true when bovine endothelial cells were exposed to tachyzoites of Toxoplasma gondii and Neospora caninum. According to a literature report dealing with Plasmodium yoelii sporozoites, breaching the membrane of certain host cells may be a common phenomenon for coccidian sporozoites but may not be for merozoites.  相似文献   

16.
Besnoitia darlingi and Besnoitia neotomofelis are cyst-forming tissue apicomplexan parasites that use domestic cats (Felis domesticus) as definitive hosts and opossums (Didelphis virginiana ) and Southern Plains woodrats (Neotoma micropus) as intermediate hosts, respectively. Nothing is known about the prevalence of B. darlingi or B. neotomofelis in cats from the United States. Besnoitia darlingi infections have been reported in naturally infected opossums from many states in the United States, and B. neotomofelis infections have been reported from Southern Plains woodrats from Texas, but naturally infected cats have not been identified. The present study examined the IgG antibody response of cats to experimental infection (B. darlingi n = 1 cat; B. neotomofelis n = 3 cats). Samples from these cats were used to develop an indirect immunofluorescent antibody test (IFAT), which was then used to examine seroprevalence of IgG antibodies to tachyzoites of B. darlingi and B. neotomofelis in a population of domestic cats from Virginia (N = 232 cats) and Pennsylvania (N = 209). The serum from cats inoculated with B. darlingi or B. neotomofelis cross-reacted with each other's tachyzoites. The titers to heterologous tachyzoites were 1 to 3 dilutions lower than to homologous tachyzoites. Sera from B. darlingi- or B. neotomofelis-infected cats did not react with tachyzoites of Toxoplasma gondii or Neospora caninum or merozoites of Sarcocystis neurona using the IFAT. Antibodies to B. darlingi were found in 14% and 2% of cats from Virginia and Pennsylvania, respectively. Antibodies to B. neotomofelis were found in 5% and 4% of cats from Virginia and Pennsylvania, respectively. Nine cats from Virginia and 1 cat from Pennsylvania were positive for both.  相似文献   

17.
Parasite Biology, Epidemiology and Systematics Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Building 1001, Beltsville, Maryland 20705-2350 Antibodies to Neospora caninum and Sarcocystis neurona were determined in serum samples of 502 domestic cats from Brazil using direct agglutination tests with the respective antigens. Antibodies to S. neurona were not found in 1:50 dilution of any serum in the S. neurona agglutination test. suggesting that domestic cats from S?o Paulo city were not exposed to S. neurona sporocysts from opossums. Antibodies to N. caninum were found in 60 (11.9%) of 502 cats with titers of 1:40 in 36 cats, 1:80 in 18 cats, 1:160 in 5 cats, and 1:800 in 1 cat using the Neospora agglutination test (NAT). Antibodies to N. caninum were confirmed by Western blotting in the sera of 10 cats with NAT titers of 1:80 to 1:800; this finding suggests that at least 10 cats had N. caninum-specific antibodies confirmed by 2 tests. This is the first documentation of natural exposure of cats to N. caninum.  相似文献   

18.
This paper describes an adhesion/invasion assay, based on combined pyrrolidine dithiocarbamate (PDTC) and antibody treatment of parasites followed by quantitative real-time PCR. This PDTC-PCR assay can be used to comparatively assess the participation of host cell- and parasite-associated components during host cell adhesion and entry by Neospora caninum and Toxoplasma gondii tachyzoites, respectively, and is potentially applicable to any other apicomplexan parasite. The assay allows to determine the parasite invasion rate in relation to the overall number of parasites which interact with host cells in any given experiment, and thus represents a significant improvement to conventional microscopic assays in terms of accuracy and reproducibility. Using this assay it was possible to show that adhesion and invasion of N. caninum tachyzoites are two distinct and separated events, in that N. caninum tachyzoites preferentially utilise host cell surface chondroitin sulphates for adhesion, but not for the host cell invasion process. Application of the PDTC-PCR assay also demonstrated that N. caninum and T. gondii tachyzoites differ largely with regard to the functional involvement of proteases in adhesion and invasion of host cells. Thus, although phylogenetically closely related, N. caninum and T. gondii are biologically quite different and exhibit distinct dissimilarities with regard to host cell interactions.  相似文献   

19.
The dose-related infectivity of Sarcocystis neurona sporocysts and merozoites of 2 recent isolates of S. neurona was compared in gamma interferon knockout (KO) mice. Tenfold dilutions of sporocysts or merozoites were bioassayed in mice, cell culture, or both. All 8 mice, fed 1,000 sporocysts, developed neurological signs with demonstrable S. neurona in their tissues. Of 24 mice fed low numbers of sporocysts (100, 10, 1), 18 became ill by 4 wk postinoculation, and S. neurona was demonstrated in their brains; antibodies (S. neurona agglutination test) to S. neurona and S. neurona parasites were not found in tissues of the 6 mice that were fed sporocysts and survived for >39 days. One thousand culture-derived merozoites of these 2 isolates were pathogenic to all 8 mice inoculated subcutaneously (s.c.). Of the 24 mice inoculated s.c. with merozoites numbering 100, 10, or 1, only 3 mice had demonstrable S. neurona infection; antibodies to S. neurona were not found in the 21 mice that had no demonstrable organisms. As few as 10 merozoites were infective for cell cultures. These results demonstrate that at least 1,000 merozoites are needed to cause disease in KO mice. Sarcocystis neurona sporocysts were infective to mice by the s.c. route.  相似文献   

20.
Two species of protozoans were isolated from a harbor seal with fatal meninogoencephalitis. Serologic reactivity was detected to both Sarcocystis neurona and Toxoplasma gondii. Parasites associated with brain inflammation and necrosis reacted only with immunohistochemical stains utilizing polyclonal antisera raised against Sarcocystis neurona. However, 2 distinct parasites were observed in cell cultures derived from the seal's brain tissue. These parasites were separated by mouse passage and limiting dilution. Purified zoites from 1 isolate (HS1) reacted strongly with polyclonal antiserum to S. neurona and with the harbor seal's own serum (1:2,560 for each) on indirect immunofluorescent antibody tests (IFAT), but weakly to antisera to T. gondii and Neospora caninum (1:40). Zoites from the second isolate (HS2) reacted positively with T. gondii polyclonal antiserum (1:81,920) and with the harbor seal's own serum (1:640), but weakly to S. neurona and N. caninum antisera (1:80 or less). Amplification and sequence analysis of protozoal DNA encoding portions of the 18s ribosomal RNA (18s rDNA) and the adjacent first internal transcribed spacer (ITSI) were performed for both isolates, and resulting sequences were compared to those from similar protozoans. Based on molecular characterization, parasite morphology, serologic reactivity, histology, and immunohistochemistry, HS1 was indistinguishable from S. neurona, and HS2 was indistinguishable from T. gondii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号