首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various approaches to modeling the population dynamics and demography of Daphnia have been published. These methods range from the simple egg-ratio method, to mathematically complex models based on partial differential equations and numerically complex individual-based Daphnia population models. The usefulness of these models in unraveling the population dynamics and demography of Daphnia under natural conditions is discussed. Next to this, an extended version of an existing individual-based Daphnia model is documented (Cladosim) and its application to a typical field data set collected in 1995 in Lake Volkerak is shown. To answer the question which factor was limiting Daphnia numbers during the course of the season food level and temperature in the model were varied and results were compared with those obtained for the observed food level and temperature. These analysis showed that in April temperature was limiting while during May–July and September–October food was limiting. In August neither temperature nor food was limiting. Analysis with a set of size-selective mortality scenarios showed that on average the Daphnia population in Lake Volkerak experienced a mild positive size-selective mortality during the year that was analyzed. Birth rates derived with the detailed individual-based model were compared with those derived with the much simpler egg-ratio method. For the conditions as observed in Lake Volkerak in 1995, both methods gave very comparable results, despite sampling intervals of up to four weeks. The same holds under the environmental scenarios. Using the size-selective mortality scenarios it could be shown, however, that under strong mortality of the smaller daphnids, the egg-ratio method severely underestimates the birth rate. The vices and virtues of the new model and potential extensions are discussed.  相似文献   

2.
When predicting population dynamics, the value of the prediction is not enough and should be accompanied by a confidence interval that integrates the whole chain of errors, from observations to predictions via the estimates of the parameters of the model. Matrix models are often used to predict the dynamics of age- or size-structured populations. Their parameters are vital rates. This study aims (1) at assessing the impact of the variability of observations on vital rates, and then on model’s predictions, and (2) at comparing three methods for computing confidence intervals for values predicted from the models. The first method is the bootstrap. The second method is analytic and approximates the standard error of predictions by their asymptotic variance as the sample size tends to infinity. The third method combines use of the bootstrap to estimate the standard errors of vital rates with the analytical method to then estimate the errors of predictions from the model. Computations are done for an Usher matrix models that predicts the asymptotic (as time goes to infinity) stock recovery rate for three timber species in French Guiana. Little difference is found between the hybrid and the analytic method. Their estimates of bias and standard error converge towards the bootstrap estimates when the error on vital rates becomes small enough, which corresponds in the present case to a number of observations greater than 5000 trees.  相似文献   

3.
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes. © 2012 The Wildlife Society.  相似文献   

4.
Aim Spatial autocorrelation is a frequent phenomenon in ecological data and can affect estimates of model coefficients and inference from statistical models. Here, we test the performance of three different simultaneous autoregressive (SAR) model types (spatial error = SARerr, lagged = SARlag and mixed = SARmix) and common ordinary least squares (OLS) regression when accounting for spatial autocorrelation in species distribution data using four artificial data sets with known (but different) spatial autocorrelation structures. Methods We evaluate the performance of SAR models by examining spatial patterns in model residuals (with correlograms and residual maps), by comparing model parameter estimates with true values, and by assessing their type I error control with calibration curves. We calculate a total of 3240 SAR models and illustrate how the best models [in terms of minimum residual spatial autocorrelation (minRSA), maximum model fit (R2), or Akaike information criterion (AIC)] can be identified using model selection procedures. Results Our study shows that the performance of SAR models depends on model specification (i.e. model type, neighbourhood distance, coding styles of spatial weights matrices) and on the kind of spatial autocorrelation present. SAR model parameter estimates might not be more precise than those from OLS regressions in all cases. SARerr models were the most reliable SAR models and performed well in all cases (independent of the kind of spatial autocorrelation induced and whether models were selected by minRSA, R2 or AIC), whereas OLS, SARlag and SARmix models showed weak type I error control and/or unpredictable biases in parameter estimates. Main conclusions SARerr models are recommended for use when dealing with spatially autocorrelated species distribution data. SARlag and SARmix might not always give better estimates of model coefficients than OLS, and can thus generate bias. Other spatial modelling techniques should be assessed comprehensively to test their predictive performance and accuracy for biogeographical and macroecological research.  相似文献   

5.
Modeling plant growth using functional traits is important for understanding the mechanisms that underpin growth and for predicting new situations. We use three data sets on plant height over time and two validation methods—in‐sample model fit and leave‐one‐species‐out cross‐validation—to evaluate non‐linear growth model predictive performance based on functional traits. In‐sample measures of model fit differed substantially from out‐of‐sample model predictive performance; the best fitting models were rarely the best predictive models. Careful selection of predictor variables reduced the bias in parameter estimates, and there was no single best model across our three data sets. Testing and comparing multiple model forms is important. We developed an R package with a formula interface for straightforward fitting and validation of hierarchical, non‐linear growth models. Our intent is to encourage thorough testing of multiple growth model forms and an increased emphasis on assessing model fit relative to a model's purpose.  相似文献   

6.
Phylogenetic estimation has largely come to rely on explicitly model-based methods. This approach requires that a model be chosen and that that choice be justified. To date, justification has largely been accomplished through use of likelihood-ratio tests (LRTs) to assess the relative fit of a nested series of reversible models. While this approach certainly represents an important advance over arbitrary model selection, the best fit of a series of models may not always provide the most reliable phylogenetic estimates for finite real data sets, where all available models are surely incorrect. Here, we develop a novel approach to model selection, which is based on the Bayesian information criterion, but incorporates relative branch-length error as a performance measure in a decision theory (DT) framework. This DT method includes a penalty for overfitting, is applicable prior to running extensive analyses, and simultaneously compares all models being considered and thus does not rely on a series of pairwise comparisons of models to traverse model space. We evaluate this method by examining four real data sets and by using those data sets to define simulation conditions. In the real data sets, the DT method selects the same or simpler models than conventional LRTs. In order to lend generality to the simulations, codon-based models (with parameters estimated from the real data sets) were used to generate simulated data sets, which are therefore more complex than any of the models we evaluate. On average, the DT method selects models that are simpler than those chosen by conventional LRTs. Nevertheless, these simpler models provide estimates of branch lengths that are more accurate both in terms of relative error and absolute error than those derived using the more complex (yet still wrong) models chosen by conventional LRTs. This method is available in a program called DT-ModSel.  相似文献   

7.
An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.  相似文献   

8.
A comparison has been made between the estimates obtained from maximum likelihood estimation of gamma, inverse normal, and normal distribution models for stage-frequency data. Results have been compared for six of sets of test data, and from many sets of simulated data. It is concluded that (1) some estimates may differ substantially between the models, (2) estimates from the correct model have little bias, and estimated standard errors are generally close to theoretical values, (3) there are problems in determining degrees of freedom for chi-squared goodness of fit tests, so that it is best to compare test statistics with simulated distributions, and (4) goodness of fit tests may not discriminate well between the three models.  相似文献   

9.
Population models commonly assume that the demographic parameters are spatially invariant, but there is considerable evidence that population growth rate (r) and the strength of density dependence (β) can vary over a species' range. To address this issue we developed a spatially explicit Gompertz population model based on the spatially varying coefficients approach to assess the spatial variation in population drivers. The model was fit to spatially stratified time series population estimates of the mallard Anas platyrhynchos in western North America. We included precipitation during the previous year and spring maximum temperature in the current year as environmental factors in the density dependent population model. Because density dependent models can give biased estimates for time series of abundance data, we fit a naïve model without informative priors and a model where we constrained the mean and variance of r to biologically realistic values that were derived via a comparative demography approach. In the naïve model, r and β were not separately identifiable and their values were overestimated, leading to unrealistic population growth. The naïve model also implied spatial variation in population r and the return time to equilibrium [1?(– β)] across the survey area. In contrast, in the informative model, r and the return time to equilibrium did not vary markedly among populations and were generally equal across populations. The effects of the climatic factors were similar across models. Population growth rates in the Prairie‐pothole region were positively correlated with precipitation, while in Alaska rates were positively correlated with spring temperature. Although it has been argued in the past that adding ecological realism could help avoid the pitfalls associated with density dependent models, our results demonstrate that imposing constraints on the population parameters is still the best course of action.  相似文献   

10.
A mixed culture derived from soil and activated sludge organisms was used to degrade phenol which was inhibitory to microorganisms at higher concentrations. The purpose of the experiments was to determine the kinetic parameters governing growth of the organisms by measuring growth rates in batch culture. To maintain a constant inoculum for the experiments inoculum was taken from a continuously operating continuous culture. Two populations were studied corresponding to two separate residence times in the continuous culture apparatus. One contained predominantly filamentous organisms, the other nonfilamentous. Five kinetic models were applied to the data and the best kinetic parameters for each model were determined by nonlinear least squares techniques. The models were then evaluated for best relative fit to the data. No significant differences were found between the models on the basis of fit and so a choice was made on the grounds of simplicity. A model proposed by Haldane was chosen as the best. No function however gave a satisfactory fit at the highest growth rates obtained. This experimental maximum in the plot of growth rate against substrate concentration was very sharp.  相似文献   

11.
Obtaining inferences on disease dynamics (e.g., host population size, pathogen prevalence, transmission rate, host survival probability) typically requires marking and tracking individuals over time. While multistate mark–recapture models can produce high‐quality inference, these techniques are difficult to employ at large spatial and long temporal scales or in small remnant host populations decimated by virulent pathogens, where low recapture rates may preclude the use of mark–recapture techniques. Recently developed N‐mixture models offer a statistical framework for estimating wildlife disease dynamics from count data. N‐mixture models are a type of state‐space model in which observation error is attributed to failing to detect some individuals when they are present (i.e., false negatives). The analysis approach uses repeated surveys of sites over a period of population closure to estimate detection probability. We review the challenges of modeling disease dynamics and describe how N‐mixture models can be used to estimate common metrics, including pathogen prevalence, transmission, and recovery rates while accounting for imperfect host and pathogen detection. We also offer a perspective on future research directions at the intersection of quantitative and disease ecology, including the estimation of false positives in pathogen presence, spatially explicit disease‐structured N‐mixture models, and the integration of other data types with count data to inform disease dynamics. Managers rely on accurate and precise estimates of disease dynamics to develop strategies to mitigate pathogen impacts on host populations. At a time when pathogens pose one of the greatest threats to biodiversity, statistical methods that lead to robust inferences on host populations are critically needed for rapid, rather than incremental, assessments of the impacts of emerging infectious diseases.  相似文献   

12.
Imperfect detection can bias estimates of site occupancy in ecological surveys but can be corrected by estimating detection probability. Time‐to‐first‐detection (TTD) occupancy models have been proposed as a cost–effective survey method that allows detection probability to be estimated from single site visits. Nevertheless, few studies have validated the performance of occupancy‐detection models by creating a situation where occupancy is known, and model outputs can be compared with the truth. We tested the performance of TTD occupancy models in the face of detection heterogeneity using an experiment based on standard survey methods to monitor koala Phascolarctos cinereus populations in Australia. Known numbers of koala faecal pellets were placed under trees, and observers, uninformed as to which trees had pellets under them, carried out a TTD survey. We fitted five TTD occupancy models to the survey data, each making different assumptions about detectability, to evaluate how well each estimated the true occupancy status. Relative to the truth, all five models produced strongly biased estimates, overestimating detection probability and underestimating the number of occupied trees. Despite this, goodness‐of‐fit tests indicated that some models fitted the data well, with no evidence of model misfit. Hence, TTD occupancy models that appear to perform well with respect to the available data may be performing poorly. The reason for poor model performance was unaccounted for heterogeneity in detection probability, which is known to bias occupancy‐detection models. This poses a problem because unaccounted for heterogeneity could not be detected using goodness‐of‐fit tests and was only revealed because we knew the experimentally determined outcome. A challenge for occupancy‐detection models is to find ways to identify and mitigate the impacts of unobserved heterogeneity, which could unknowingly bias many models.  相似文献   

13.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

14.
Models of outbreaks in forest-defoliating insects are typically built from a priori considerations and tested only with long time series of abundances. We instead present a model built from experimental data on the gypsy moth and its nuclear polyhedrosis virus, which has been extensively tested with epidemic data. These data have identified key details of the gypsy moth-virus interaction that are missing from earlier models, including seasonality in host reproduction, delays between host infection and death, and heterogeneity among hosts in their susceptibility to the virus. Allowing for these details produces models in which annual epidemics are followed by bouts of reproduction among surviving hosts and leads to quite different conclusions than earlier models. First, these models suggest that pathogen-driven outbreaks in forest defoliators occur partly because newly hatched insect larvae have higher average susceptibility than do older larvae. Second, the models show that a combination of seasonality and delays between infection and death can lead to unstable cycles in the absence of a stabilizing mechanism; these cycles, however, are stabilized by the levels of heterogeneity in susceptibility that we have observed in our experimental data. Moreover, our experimental estimates of virus transmission rates and levels of heterogeneity in susceptibility in gypsy moth populations give model dynamics that closely approximate the dynamics of real gypsy moth populations. Although we built our models from data for gypsy moth, our models are, nevertheless, quite general. Our conclusions are therefore likely to be true, not just for other defoliator-pathogen interactions, but for many host-pathogen interactions in which seasonality plays an important role. Our models thus give qualitative insight into the dynamics of host-pathogen interactions, while providing a quantitative interpretation of our gypsy moth-virus data.  相似文献   

15.
Matrix population models are widely used to assess population status and to inform management decisions. Despite existing theories for building such models, model construction is often partially based on expert opinion. So far, model structure has received relatively little attention, although it may affect estimates of population dynamics. Here, we assessed the consequences of two published matrix structures (a 4 × 4 matrix based on expert opinion and a 10 × 10 matrix based on statistical modeling) for estimates of vital rates and stochastic population dynamics of the long-lived herb Astragalus scaphoides. We explored the ways in which choice of model structure alters the accuracy (i.e., mean) and precision (i.e., variance) of predicted population dynamics. We found that model structure had a negligible effect on the accuracy and precision of vital rates and stochastic stage distribution. However, the 10 × 10 matrix produced lower estimates of stochastic population growth rates than the 4 × 4 matrix, and more accurately predicted the observed trends in population abundance for three out of four study populations. Moreover, estimates of realized variation in population growth rate due to fluctuations in population stage structure over time were occasionally sensitive to matrix structure, suggesting differential roles of transient dynamics. Our study indicates that statistical modeling for choosing categories in matrix models might be preferable over expert opinion to accurately predict population trends and can provide a more objective way for model construction when the biological knowledge of the species is limited.  相似文献   

16.
Fiske IJ  Bruna EM  Bolker BM 《PloS one》2008,3(8):e3080

Background

Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (λ) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of λ–Jensen''s Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of λ due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of λ.

Methodology/Principal Findings

Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating λ for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of λ with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography.

Conclusions/Significance

We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.  相似文献   

17.
This study used existing western brook lamprey Lampetra richardsoni age information to fit three different growth models (i.e. von Bertalanffy, Gompertz and logistic) with and without error in age estimates. Among these growth models, there was greater support for the logistic and Gompertz models than the von Bertalanffy model, regardless of ageing error assumptions. The von Bertalanffy model, however, appeared to fit the data well enough to permit survival estimates; using length‐based estimators, annual survival varied between 0·64 (95% credibility interval: 0·44–0·79) and 0·81 (0·79–0·83) depending on ageing and growth process error structure. These estimates are applicable to conservation and management of L. richardsoni and other western lampreys (e.g. Pacific lamprey Entosphenus tridentatus) and can potentially be used in the development of life‐cycle models for these species. These results also suggest that estimators derived from von Bertalanffy growth models should be interpreted with caution if there is high uncertainty in age estimates.  相似文献   

18.
Modeling vital rates improves estimation of population projection matrices   总被引:1,自引:1,他引:0  
Population projection matrices are commonly used by ecologists and managers to analyze the dynamics of stage-structured populations. Building projection matrices from data requires estimating transition rates among stages, a task that often entails estimating many parameters with few data. Consequently, large sampling variability in the estimated transition rates increases the uncertainty in the estimated matrix and quantities derived from it, such as the population multiplication rate and sensitivities of matrix elements. Here, we propose a strategy to avoid overparameterized matrix models. This strategy involves fitting models to the vital rates that determine matrix elements, evaluating both these models and ones that estimate matrix elements individually with model selection via information criteria, and averaging competing models with multimodel averaging. We illustrate this idea with data from a population of Silene acaulis (Caryophyllaceae), and conduct a simulation to investigate the statistical properties of the matrices estimated in this way. The simulation shows that compared with estimating matrix elements individually, building population projection matrices by fitting and averaging models of vital-rate estimates can reduce the statistical error in the population projection matrix and quantities derived from it.  相似文献   

19.
Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity—demographic, environmental, and random catastrophes— affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity—positive and negative environmental fluctuations—caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are applicable to metapopulation or time series data and are relevant for predicting extinction in conservation applications or the management of invasive species.  相似文献   

20.
A procedure is presented that uses the regression coefficients for the Coale and Demeny west model life tables to model selected demographic characteristics from skeletal age-at-death distributions. Model death distributions were constructed and compared to a given skeletal distribution, using methods of maximum likelihood estimation to determine the best fit. Two chi-square tests are employed to evaluate the degree of fit. The resulting model includes estimates of demographic characteristics including gross reproductive rate, crude birth rate and life expectancy. The procedure is applied to three archaeological skeletal samples as test cases: two from eastern North America and one from Mexico. These display a range of correspondence (between the best fitting model and the data) from good to poor. The proposed procedure is a potentially powerful tool for both reconstructing paleodemographic rates and illuminating differences between typical human patterns and those found in archaeological populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号