首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK⿿s interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK⿿s binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK⿿s interaction with Importin 7.  相似文献   

2.
Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition. As a result, we identified 30, which exhibited no hERG activity but unfortunately was poorly absorbed in rats and mice. We also identified a SYK chemical probe, 17, which exhibits excellent potency at SYK, and an adequate rodent PK profile to support in vivo efficacy/PD studies.  相似文献   

3.
Spleen Tyrosine Kinase (SYK) is a well-studied enzyme with therapeutic applications in oncology and autoimmune diseases. We identified an azabenzimidazole (ABI) series of SYK inhibitors by mining activity data of 86,000 compounds from legacy biochemical assays with SYK and other homologous kinases as target enzymes. A structure-based design and hybridization approach was then used to improve the potency and kinase selectivity of the hits. Lead compound 23 from this novel ABI series has a SYK IC50 = 0.21 nM in a biochemical assay and inhibits growth of SUDHL-4 cells at a GI50 = 210 nM.  相似文献   

4.
The SYK non-receptor tyrosine kinase is a key effector of immune receptors signaling in hematopoietic cells. Here, we identified and characterized a novel interaction between SYK and the ubiquitin-specific protease 25 (USP25). We report that the second SH2 domain of SYK physically interacts with a tyrosine-rich, C-terminal region of USP25 independently of tyrosine phosphorylation. Moreover, we showed that SYK specifically phosphorylates USP25 and alters its cellular levels. This study thus uncovers a new SYK substrate and reveals a novel SYK function, namely the regulation of USP25 cellular levels.  相似文献   

5.
Spleen tyrosine kinase (SYK) is a non receptor type tyrosine kinase and a known candidate tumor suppressor gene in breast carcinoma. Loss of Syk is associated with breast cancer invasion and increased cell mortality. The main goal of our study was to detect germ-line polymorphisms in SYK gene in breast cancer affected females of Pakistani origin, in order to understand the genetic basis of complex human breast cancer. Seven novel SYK gene SNPs were identified in breast cancer patients. Among these, three were identified in intronic region, one at the 5'splice donor site (5'SD) and three in 5'untranslated region (5'UTR) of SYK gene. Mutations at the 5'SD and at 5'UTR can be crucial and could be responsible for generation of mutated Syk protein. In silico analysis of the 5'UTR variations revealed that one of the mutations was responsible for generation of a more stable structure of 5'UTR. Such a change in pre-mRNA could potentially down regulate SYK expression. These findings add to the growing literature implicating dysfunctional SYK gene as a contributor to human breast cancer, and suggest that therapies targeting its molecular pathways could provide effective means of treating/preventing breast cancer.  相似文献   

6.
Melanoma is considered as an aggressive neoplastic transformation and featured with high metastatic potential. Although some studies have provided targets for novel therapeutic interventions, clinical development of targeted drugs for melanoma still remains obscure. Therefore, this study aims to identify the role of microRNA-27a (miR-27a) in autophagy and apoptosis of melanoma cells in regulating spleen tyrosine kinase (SYK)-mediated the mammalian target of rapamycin (mTOR) signaling pathway. A microarray-based analysis was made to screen differentially expressed genes and predict target miRNA. Melanoma specimens were collected with pigmented nevus as a control. Melanoma cell line Mel-RM was treated with miR-27a inhibitor or pcDNA-SYK to prove their effects on autophagy and apoptosis of melanoma cells. The volume change and tumor mass of nude mice in each group were detected by the tumorigenesis assay. Microarray-based analysis results showed that SYK was lowly expressed in melanoma cells and may be regulated by miR-27a. Besides, miR-27a expression was increased whereas SYK expression was decreased in melanoma tissues. Meanwhile, miR-27a was positively correlated with tumor stage and lymph node metastasis of melanoma tissues. Furthermore, miR-27a targeted SYK and silencing of miR-27a or overexpression of SYK cells promoted autophagy and apoptosis of melanoma cells and reduced their tumorigenic ability in vivo. In conclusion, this study proves that silencing of miR-27a facilitates autophagy and apoptosis of melanoma cells by upregulating SYK expression and activating the mTOR signaling pathway. The finding offers new ideas for the clinical development of melanoma.  相似文献   

7.
Liver fibrosis is a danger signal indicating a huge risk of liver cancer occurrence, but there is still no effective clinical means to regulate the progress of liver fibrosis. Although a variety of drugs targeting SYK have been developed for tumors and autoimmune diseases, the mechanism and specific efficacy of SYK’s role in liver fibrosis are not yet clear. Our studies based on chronic CCL4, bile duct ligation, and subacute TAA mouse models show that SYK in monocyte-derived macrophages (MoMFs) is fully dependent on phosphorylation of Erk to up-regulate the expression of Hif1α, thereby forming the crosstalk with SYK to drive liver fibrosis progress. We have evaluated the ability of the small molecule SYK inhibitor GS9973 in a variety of models. Contrary to previous impressions, high-frequency administration of GS9973 will aggravate CCL4-induced liver fibrosis, which is especially unsuitable for patients with cholestasis whose clinical features are bile duct obstruction. In addition, we found that inhibition of MoMFs SYK impairs the expression of CXCL1, on one hand, it reduces the recruitment of CD11bhiLy6Chi inflammatory cells, and on the other hand, it promotes the phenotype cross-dress process of pro-resolution MoMFs, thereby remodeling the chronic inflammatory environment of the fibrotic liver. Our further findings indicate that on the basis of the administration of CCR2/CCR5 dual inhibitor Cenicriviroc, further inhibiting MoMFs SYK may give patients with fibrosis additional benefits.Subject terms: Mechanisms of disease, Monocytes and macrophages  相似文献   

8.
The binding and activation of macrophages by microscopic aggregates of oxLDL in the intima of the arteries may be an important step towards atherosclerosis leading to heart attack and stroke. Microbeads coated with oxLDL were used to activate, capture and isolate the oxLDL receptor complex from the surface of live cells. Analysis of the resulting tryptic peptides by liquid chromatography and tandem mass spectrometry revealed the Spleen Tyrosine Kinase (SYK), and many of SYK's known interaction network including Fc receptors (FCGR2A, FCER1G and FCGR1A) Toll receptor 4 (TLR4), receptor kinases like EGFRs, as well as RNA binding and metabolism proteins. High-intensity precursor ions (∼9*E3 to 2*E5 counts) were correlated to peptides and specific phosphopeptides from long isoform of SYK (SYK-L) by the SEQUEST, OMSSA and X!TANDEM algorithms. Peptides or phosphopeptides from SYK were observed with the oxLDL-microbeads. Pharmacological inhibitors of SYK activity significantly reduced the engulfment of oxLDL microbeads in the presence of serum factors, but had little effect on IgG phagocytosis. Anti SYK siRNA regulated oxLD engulfment in the context of serum factors and or SYK-L siRNA significantly inhibited engulfment of oxLDL microbeads, but not IgG microbeads.  相似文献   

9.
Spleen tyrosine kinase (SYK) gene has been identified as novel susceptibility locus for ischaemic stroke (IS) previously. However, regulation of SYK gene remains unknown in IS. In this study, we aimed to identify miRNAs that might be involved in the development of IS by targeting SYK gene. miRNAs were firstly screened by bioinformatics predicting tool. The expression levels of SYK gene were detected by qRT‐PCR and western blotting, respectively, after miRNA transfection. Luciferase reporter assay was applied to investigate the direct binding between miRNAs and target gene. miRNA levels were detected by miRNA TaqMan assays in the blood cells of 270 IS patients and 270 control volunteers. Results suggest that SYK gene might be a direct target of miR‐129‐2‐3p. The blood level of miR‐129‐2‐3p was significantly lower in IS patients (P < 0.05), and negatively associated with the risk of IS (adjusted OR: 0.88; 95% CI: 0.80‐0.98; P = 0.021) by multivariable logistic regression analysis. The blood levels of SYK gene were significantly higher in IS patients, and miR‐129‐2‐3p expression was negatively correlated with mean platelet volume. In summary, our study suggests that miR‐129‐2‐3p might be involved in the pathogenesis of IS through interrupting SYK expression and the platelet function, and further investigation is needed to explore the underlying mechanism.  相似文献   

10.
The discovery and lead optimisation of a novel series of SYK inhibitors is described. These were optimised for SYK potency and selectivity against Aurora B. Compounds were profiled in a human skin penetration study to identify a suitable candidate molecule for pre-clinical development. Compound 44 (GSK2646264) was selected for progression and is currently in Phase I clinical trials.  相似文献   

11.
Mutations in the E3 ubiquitin ligase CBL, found in several myeloid neoplasms, lead to decreased ubiquitin ligase activity. In murine systems, these mutations are associated with cytokine‐independent proliferation, thought to result from the activation of hematopoietic growth receptors, including FLT3 and KIT. Using cell lines and primary patient cells, we compared the activity of a panel of FLT3 inhibitors currently being used or tested in AML patients and also evaluated the effects of inhibition of the non‐receptor tyrosine kinase, SYK. We show that FLT3 inhibitors ranging from promiscuous to highly targeted are potent inhibitors of growth of leukaemia cells expressing mutant CBL in vitro, and we demonstrate in vivo efficacy of midostaurin using mouse models of mutant CBL. Potentiation of effects of targeted FLT3 inhibition by SYK inhibition has been demonstrated in models of mutant FLT3‐positive AML and AML characterized by hyperactivated SYK. Here, we show that targeted SYK inhibition similarly enhances the effects of midostaurin and other FLT3 inhibitors against mutant CBL‐positive leukaemia. Taken together, our results support the notion that mutant CBL‐expressing myeloid leukaemias are highly sensitive to available FLT3 inhibitors and that this effect can be significantly augmented by optimum inhibition of SYK kinase.  相似文献   

12.
Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.  相似文献   

13.
Hybridisation of amino-pyrimidine based SYK inhibitors (e.g. 1a) with previously reported diamine-based SYK inhibitors (e.g. TAK-659) led to the identification and optimisation of a novel pyrimidine-based series of potent and selective SYK inhibitors, where the original aminomethylene group was replaced by a 3,4-diaminotetrahydropyran group. The initial compound 5 achieved excellent SYK potency. However, it suffered from poor permeability and modest kinase selectivity. Further modifications of the 3,4-diaminotetrahydropyran group were identified and the interactions of those groups with Asp512 were characterised by protein X-ray crystallography. Further optimisation of this series saw mixed results where permeability and kinase selectivity were increased and oral bioavailability was achieved in the series, but at the expense of potent hERG inhibition.  相似文献   

14.
15.
AIMS: Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. METHODS AND RESULTS: We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. CONCLUSIONS: Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.  相似文献   

16.

Introduction

Spleen tyrosine kinase (SYK) is a key integrator of intracellular signals triggered by activated immunoreceptors, including Bcell receptors (BCR) and Fc receptors, which are important for the development and function of lymphoid cells. Given the clinical efficacy of Bcell depletion in the treatment of rheumatoid arthritis and multiple sclerosis, pharmacological modulation of Bcells using orally active small molecules that selectively target SYK presents an attractive alternative therapeutic strategy.

Methods

A SYK inhibitor was developed and assayed in various in vitro systems and in the mouse model of collagen-induced arthritis (mCIA).

Results

A novel ATP-competitive inhibitor of SYK, 6-[(1R,2S)-2-Amino-cyclohexylamino]-4-(5,6-dimethyl-pyridin-2-ylamino)-pyridazine-3-carboxylic acid amide, designated RO9021, with an adequate kinase selectivity profile and oral bioavailability, was developed. In addition to suppression of BCR signaling in human peripheral blood mononuclear cells (PBMC) and whole blood, FcγR signaling in human monocytes, and FcϵR signaling in human mast cells, RO9021 blocked osteoclastogenesis from mouse bone marrow macrophages in vitro. Interestingly, Toll-like Receptor (TLR) 9 signaling in human Bcells was inhibited by RO9021, resulting in decreased levels of plasmablasts, immunoglobulin (Ig) M and IgG upon B-cell differentiation. RO9021 also potently inhibited type I interferon production by human plasmacytoid dendritic cells (pDC) upon TLR9 activation. This effect is specific to TLR9 as RO9021 did not inhibit TLR4- or JAK-STAT-mediated signaling. Finally, oral administration of RO9021 inhibited arthritis progression in the mCIA model, with observable pharmacokinetics (PK)-pharmacodynamic (PD) correlation.

Conclusions

Inhibition of SYK kinase activity impinges on various innate and adaptive immune responses. RO9021 could serve as a starting point for the development of selective SYK inhibitors for the treatment of inflammation-related and autoimmune-related disorders.  相似文献   

17.
Using direct R-banding fluorescence in situ hybridization, we assigned five functional genes-growth hormone receptor (GHR), prolactin receptor (PRLR), spleen tyrosine kinase (SYK), aldolase B (ALDOB), and muscle skeletal receptor tyrosine kinase (MUSK)-to the chicken Z chromosome. SYK and MUSK were newly localized to the chicken Z chromosome in this study. GHR and PRLR were situated close to each other on the short arm of the chicken Z chromosome, as are their counterparts on human chromosome 5. SYK, MUSK, and ALDOB, which have been mapped to human chromosome 9, were localized to the long arm of the chicken Z chromosome. Thus, the present results indicate the presence of conserved synteny between the chicken Z chromosome and human chromosomes 5 and 9. Using the same method, four of the genes (GHR, PRLR, ALDOB, and MUSK) were assigned to the Japanese quail Z chromosome. The locations of these four Z-linked genes were conserved between chicken and Japanese quail. The results support the notion that the avian Z chromosome and the mammalian X chromosome did not evolve from a common ancestral linkage group.  相似文献   

18.
We have recently demonstrated that the D3-phosphoinositide phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) is critical for producing sustained calcium signals through its role in promoting the function of TEC family tyrosine kinases such as Bruton's tyrosine kinase. Although PtdIns-3,4,5-P(3) can potentially be synthesized by any of several types of phosphoinositide 3-kinases (PI3Ks), B cell receptor (BCR)-induced PtdIns-3,4,5-P(3) production is thought to occur primarily through the activation of the class Ia (p85/p110) PI3Ks. This process has been proposed to be mediated by an interaction between the Src family kinase LYN and the p85 subunit of PI3K and/or through p85 membrane recruitment mediated by CBL and/or CD19. However, calcium signaling and other PI3K-dependent signals are relatively preserved in a LYN kinase-deficient B lymphocyte cell line, suggesting that an alternative pathway for PI3K activation exists. As SYK/ZAP70 kinases are upstream from many BCR-initiated signaling events, we directly analyzed SYK-dependent accumulation of both PtdIns-3,4,5-P(3) and PtdIns-3,4-P(2) in B cell receptor signaling using both dominant negative and genetic knockout approaches. Both methods indicate that SYK is upstream of, and necessary for, a significant portion of BCR-induced PtdIns-3,4, 5-P(3) production. Whereas CD19 does not appear to be involved in this SYK-dependent pathway, the SYK substrate CBL is likely involved as the dominant negative SYK markedly attenuates CBL tyrosine phosphorylation and completely blocks the BCR-dependent association of CBL with p85 PI3K.  相似文献   

19.
The inducible T cell kinase-spleen tyrosine kinase (ITK-SYK) oncogene consists of the Tec homology-pleckstrin homology domain of ITK and the kinase domain of SYK, and it is believed to be the cause of peripheral T cell lymphoma. We and others have recently demonstrated that this fusion protein is constitutively tyrosine-phosphorylated and is transforming both in vitro and in vivo. To gain a deeper insight into the molecular mechanism(s) underlying its activation and signaling, we mutated a total of eight tyrosines located in the SYK portion of the chimera into either phenylalanine or to the negatively charged glutamic acid. Although mutations in the interdomain-B region affected ITK-SYK kinase activity, they only modestly altered downstream signaling events. In contrast, mutations that were introduced in the kinase domain triggered severe impairment of downstream signaling. Moreover, we show here that SLP-76 is critical for ITK-SYK activation and is particularly required for the ITK-SYK-dependent phosphorylation of SYK activation loop tyrosines. In Jurkat cell lines, we demonstrate that expression of ITK-SYK fusion requires an intact SLP-76 function and significantly induces IL-2 secretion and CD69 expression. Furthermore, the SLP-76-mediated induction of IL-2 and CD69 could be further enhanced by SYK or ZAP-70, but it was independent of their kinase activity. Notably, ITK-SYK expression in SYF cells phosphorylates SLP-76 in the absence of SRC family kinases. Altogether, our data suggest that ITK-SYK exists in the active conformation state and is therefore capable of signaling without SRC family kinases or stimulation of the T cell receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号