首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-methoxycarbonyl]tetrahydrofuran-5-carboxylic acid (9) and (+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-(4'-imidazolyl)]tetrahydrofuran 5-carboxylic acid (14) were synthesized as inhibitors of influenza neuraminidase (NA). Both compounds 9 and 14 inhibit influenza NA A with an IC(50) of about 0.5 microM and NA B with an IC(50) of 1.0 microM.  相似文献   

2.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

3.
1. The sensitivity of partially purified low Km phosphodiesterase (PDE) from Mucor rouxii to pharmacological agents and cAMP analogs was studied. The IC50 obtained were compared with those reported for PDEs from higher eukaryotes. 2. The best inhibitors of the hydrolysis of 1 microM cAMP were SQ 65.442 (IC50 c 10 microM), dipyridamol and CI 930. cGMP was not an inhibitor (IC50 greater than 1000 microM). 3. The cAMP analogs were tested as inhibitors of the hydrolysis of 0.1 microM cAMP. 8-Aminohexylamino cAMP was the best inhibitor with an IC50 of c 1 microM. 4. A sedimentation profile of Mucor PDE was assayed in the presence of several pharmacological inhibitors and cAMP analogs. No isoforms with different sensitivity towards the inhibitors were detected. Forms with slightly different behaviour towards some cAMP analogs were observed.  相似文献   

4.
In order to access beta-secretase (BACE1), and enzyme strongly implicated in the cause of Alzheimer's disease, inhibitors must possess sufficient lipophilicity to traverse two lipid bilayers. Current drug candidates, which are almost totally peptide-derived, are thus inefficient because cell permeability presents a serious limiting factor. In this study, lipophilic alkylated (C(10)-C(5)) flavanones from Sophora flavescens were examined for their inhibitory effects against beta-secretase. Lavandulyl flavanones (1, 2, 5, 6, and 8) showed potent beta-secretase inhibitory activities with IC(50)s of 5.2, 3.3, 8.4, 2.6, and 6.7microM, respectively, while no significant activity was observed in the corresponding hydrated lavandulyl flavanones (4 and 7) and prenylated flavanone (3). As we expected, lavandulyl flavanones reduced Abeta secretion dose-dependently in transfected human embryonic kidney (HEK-293) cells. In kinetic studies, all compounds screened were shown to be noncompetitive inhibitor.  相似文献   

5.
A series of pyrrolidine derivatives were synthesized and evaluated for their ability to inhibit neuraminidase (NA) of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially 4-hydroxy-L-proline using a suitable synthetic strategy. These compounds showed potent inhibitory activity against influenza A neuraminidase. Within this series, five compounds, 6e, 9c, 9e, 9f, and 10e, have good potency (IC(50)=1.56-2.71 microM) which are compared to that the NA inhibitor Oseltamivir (IC(50)=1.06 microM), and could be used as lead compoundS in the future.  相似文献   

6.
To generate new scaffold candidates as highly selective and potent cyclin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 (IC50: 3 microM), CDK1 (IC50: 4.9 microM), and CDK4 (IC50: 3 microM), yet had much less inhibitory effect (IC50: >20 microM) on other kinases, such as casein kinase 2-1 (CK2- alpha1), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.  相似文献   

7.
A group of 4-(4-methanesulfonylphenyl)-3-phenyl-2(5H)furanones possessing an acetyl, 3-oxobut-1-ynyl, [hydroxyl(or alkoxy)imino]alkyl, [hydroxyl(or alkoxy)imino]alkynyl, and N-alkoxy(or N-phenoxy)carbonyl-N-hydroxy-N-ethylamino substituents at the para-position of the C-3 phenyl ring of rofecoxib were synthesized. This group of compounds was designed for evaluation as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs) that exhibit in vivo anti-inflammatory and analgesic activities. In vitro COX-1/COX-2, and 5-LOX/15-LOX, isozyme inhibition structure-activity relationships identified 3-[4-(1-hydroxyimino)ethylphenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (17a) having an optimal combination of COX-2 (COX-2 IC50 = 1.4 microM; COX-2 SI > 71), and 5-LOX and 15 LOX (5-LOX IC50 = 0.28 microM; 15-LOX IC50 = 0.32 microM), inhibitory effects. It was also discovered that 3-[4-(3-hydroxyiminobut-1-ynyl)phenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (18a) possesses dual COX-2 (IC50 = 2.7 microM) and 5-LOX (IC50 = 0.30 microM) inhibitor actions. Further in vivo studies employing a rat carrageenan-induced paw edema model showed that the oxime compounds (17a, 18a) were more potent anti-inflammatory agents than the 5-LOX inhibitor caffeic acid, and 15-LOX inhibitor nordihydroguaiaretic acid (NDGA), but less potent than the selective COX-2 inhibitor celecoxib. The results of this investigation showed that incorporation of a para-oxime moiety on the C-3 phenyl ring of rofecoxib provides a suitable template for the design of dual inhibitors of the COX and LOX enzymes.  相似文献   

8.
The cyclin dependent kinase (cdk) inhibitor NU6027, 4-cyclohexylmethoxy-5-nitroso-pyrimidine-2,6-diamine (IC(50) vs cdk1/cyclinB1=2.9+/-0.1 microM and IC(50) vs cdk2/cyclinA3=2.2+/-0.6 microM), was used as the basis for the design of a series of 4-alkoxy-2,6-diamino-5-nitrosopyrimidine derivatives. The synthesis and evaluation of 21 compounds as potential inhibitors of cyclin-dependent kinases 1 and 2 is described and the structure-activity relationships relating to NU6027 have been probed. Simple alkoxy- or cycloalkoxy-groups at the O(4)-position were tolerated, with the 4-(2-methylbutoxy)-derivative (IC(50) vs cdk1/cyclinB1=12+/-2 microM and cdk2/cyclinA3=13+/-4 microM) retaining significant activity. Substitutions at the N(6) position were not tolerated. Replacement of the 5-nitroso substituent with ketone, oxime and semicarbazone groups essentially abolished activity. However, the derivative bearing an isosteric 5-formyl group, 2,6-diamino-4-cyclohexylmethoxy-pyrimidine-5-carbaldehyde, showed modest activity (IC(50) vs cdk1/cyclinB1=35+/-3 microM and cdk2/cyclinA3=43+/-3 microM). The X-ray crystal structure of the 5-formyl compound bound to cdk2 has been determined to 2.3A resolution. The intramolecular H-bond deduced from the structure with NU6027 bound to cdk2 is not evident in the structure with the corresponding formyl compound. Thus the parent compound, 4-cyclohexylmethoxy-5-nitrosopyrimidine-2,6-diamine (NU6027), remains the optimal basis for future structure-activity studies for cyclin-dependent kinase inhibitors in this series.  相似文献   

9.
2,6-Dideoxy-7-O-(beta-D-glucopyranosyl) 2,6-imino-D-glycero-L-gulo- heptitol (7-O-beta-D-glucopyranosyl-alpha-homonojirimycin, 1) was isolated from the 50% methanol extract of the whole plant of Lobelia sessilifolia (Campanulaceae), which was found to potently inhibit rice alpha-glucosidase. Adenophorae radix, roots of Adenophora spp. (Campanulaceae), yielded new homonojirimycin derivatives, adenophorine (2), 1-deoxyadenophorine (3), 5-deoxyadenophorine (4), 1-C-(5-amino-5-deoxy-beta-D-galactopyranosyl)butane (beta-1-C-butyl-deoxygalactonojirimycin, 5), and the 1-O-beta-D-glucosides of 2 (6) and 4 (7), in addition to the recently discovered alpha-1-C-ethylfagomine (8) and the known 1-deoxymannojirimycin (9) and 2R,5R-bis(hydroxymethyl)-3R,4R- dihydroxypyrrolidine (DMDP, 10). Compound 4 is a potent inhibitor of coffee bean alpha-galactosidase (IC50 = 6.4 microM) and a reasonably good inhibitor of bovine liver beta-galactosidase (IC50 = 34 microM). Compound 5 is a very specific and potent inhibitor of coffee bean alpha-galactosidase (IC50 = 0.71 microM). The glucosides 1 and 7 were potent inhibitors of various alpha-glucosidases, with IC50 values ranging from 1 to 0.1 microM. Furthermore, 1 potently inhibited porcine kidney trehalase (IC50 = 0.013 microM) but failed to inhibit alpha-galactosidase, whereas 7 was a potent inhibitor of alpha-galactosidase (IC50 = 1.7 microM) without trehalase inhibitory activity.  相似文献   

10.
The amidrazone of D-mannonolactam (see compound 5, Fig. 1) was synthesized chemically as a mimic of the mannopyranosyl cation and tested as a potential inhibitor of mannosidases. In this study compound 5 is shown to be a more general mannosidase inhibitor than other currently known compounds and exhibits properties not previously observed with any other mannosidase inhibitors. Thus D-mannonolactam amidrazone not only inhibits the Golgi mannosidase I (IC50 = 4 microM) and mannosidase II (IC50 = 90-100 nM), but it is the first inhibitor that has been shown to be a potent inhibitor of the soluble or endoplasmic reticulum alpha-mannosidase (IC50 = 1 microM). This compound also inhibited the aryl-mannosidases regardless of anomeric configuration although it was much more effective on enzymes recognizing alpha-linked mannose, i.e. jack bean and mung bean alpha-mannosidases (IC50 = 400 nM) as compared with fungal beta-mannosidase (IC50 = 150 microM). Mannonoamidrazone was tested in animal cell cultures using influenza virus-infected Madin-Darby canine kidney cells as a model system, and was found to prevent almost completely the formation of complex types of N-linked oligosaccharides with the formation of about equal amounts of Man9(GlcNAc)2 and Man8(GlcNAc)2 structures. Thus D-mannonolactam amidrazone is a potent but broad spectrum mannosidase inhibitor whose structure and properties should provide valuable insight into the design of other useful glycosidase inhibitors.  相似文献   

11.
We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.  相似文献   

12.
Based upon an earlier observation that sodium docosanedioate (NaO2C-(CH2)20-CO2NA) weakly inhibits HIV-1 proteinase (IC50 12 microM), we have identified a class of more potent inhibitors (sulfonic acids) of this enzyme which are likewise dianionic at pH 5-6.5. Many of the compounds were moderately strong inhibitors of the enzyme (IC50 40nM-10 microM) and some have previously been shown to have anti-HIV activity in lymphocytes. Proteinase inhibition was dependent on the separation between sulfonate/carboxylate substituents, consistent with the hypothesis that negative charged ends of an inhibitor might form ionic bonds with Arg 8 and Arg 108 located at either end of the substrate-binding groove of the enzyme. The binding mode remains to be established by structure elucidation. Results for enzyme inhibition are presented along with structure-activity relationships and evidence for pH dependent inhibition. The general observations reported here may be useful for developing more potent and selective non-peptidic proteinase inhibitors.  相似文献   

13.
A series of (+/-)-3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3-position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC50 = 98.8 microM, ketoconazole, 22.15 microM) showed that it was not stereoselective in its inhibition. (+/-)-(1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC50 = 20.9 microM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC50 = 211.6 microM respectively; ketoconazole, 38.8% and 85.95 microM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (+/-)-(1) was a weak inhibitor (c. 53% at 200 microM) whereas ketoconazole showed high potency (c. 65% at 0.625 microM and 0.25 microM respectively). The nature of the induced target enzyme is discussed.  相似文献   

14.
The activity of three prenylhydroquinone glucosides (1-3) and four caffeoylquinic esters (4-7), obtained from Phagnalon rupestre, on elastase release, myeloperoxidase activity and superoxide and leukotriene B(4) production from polymorphonuclear leukocytes was determined. 4,5-Dicaffeoylquinic acid strongly inhibited elastase release with an IC(50) value of 4.8 microM. Methylated caffeoylquinic derivatives were the most potent inhibitors of myeloperoxidase (IC(50) near 60 microM), whereas both methylated and free carboxyl isomers inhibited superoxide production with similar potency (IC(50) between 27 and 42 microM). The monocaffeoyl conjugate of prenylhydroquinone glucoside (3), the most potent inhibitor of leukotriene B(4) production (IC(50) = 33 microM), possesses a mixed hydroquinone-caffeoyl character that could be considered as a potential anti-inflammatory entity.  相似文献   

15.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

16.
Insulin-like growth factor-I (IGF-I) stimulated Xenopus laevis oocyte ribosomal S6 kinase activity 5- to 10-fold, with an apparent EC50 of 0.8 +/- 0.1 nM after 90 min of hormone treatment. IGF-I-stimulated enzyme activity was inhibited by treatment of oocytes with nonselective phosphodiesterase (PDE) inhibitors, with apparent IC50 values of 2 +/- 1 microM papaverine, 20 +/- 2 microM isobutylmethylxanthine, and 128 +/- 16 microM theophylline. Type III PDE inhibitors also inhibited IGF-I-stimulated S6 kinase activity with IC50 values of 9.7 +/- 0.3 microM Cl-930 and 84 +/- 23 microM imazodan (Cl-914). These drugs apparently affected an intracellular molecular event leading to activation of S6 kinase, since Cl-930 prevented IGF-I-stimulation of S6 kinase, but had no direct inhibitory effect when added to the S6 kinase enzyme assay mixture. While hormone-stimulated S6 kinase activity was inhibited by isobutylmethylxanthine (nonselective PDE inhibitor) and Cl-930 (PDE III inhibitor), Ro 20, 1724 and rolipram (PDE IV inhibitors) and dipyridamole (PDE V inhibitor) had no significant effect on activated enzyme levels. The time course for IGF-I stimulation of oocyte S6 kinase displayed a small early peak of activity approximately 0.15-0.4 time required for 50% of cell population to display white spots (GVBD50) and a second major increase in activity at 0.6-0.7 GVBD50 that was sustained until meiotic maturation was complete. The second wave of enzyme activation was inhibited by Cl-930, but the early increase was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To test the Kirsten-Ras (Ki-Ras) alternative prenylation hypothesis in malignant transformation, we used a novel farnesyltransferase inhibitor competitive to farnesyl-pyrophosphate, RPR130401, and a CaaX peptidomimetic geranylgeranyltransferase-1 inhibitor GGTI-298. In Ki-Ras-overexpressing transformed adrenocortical cells, RPR130401 at 1-10 microM inhibited very efficiently the [(3)H]farnesyl but not [(3)H]geranylgeranyl transfer to Ras. However, proliferation of these cells was only slightly sensitive to RPR130401 (IC(50)=30 microM). GGTI-298 inhibited the growth of these cells with an IC(50) of 11 microM but cell lysis was observed at 15 microM. The combination of 10 microM RPR130401 and 10 microM GGTI-298 inhibited efficiently (80%) cell proliferation. These combined inhibitors but not each inhibitor alone blocked the cell cycle in G(0)/G(1) and disrupted MAP kinase activation. Thus, combination of two inhibitors, at non-cytotoxic concentrations, acting on the farnesyl-pyrophosphate binding site of the farnesyltransferase and the CaaX binding site of the geranylgeranyltransferase-1 respectively is an efficient strategy for disrupting Ki-Ras tumorigenic cell proliferation.  相似文献   

18.
We have examined the effects of inhibitors of proton transport systems on osteoclastic bone resorption using an in vitro bone slice assay, where osteoclasts (OCs) are free from the influence of other bone cells. Amiloride (AM) and dimethylamiloride (DMA), inhibitors of the Na+/H+ antiporter, were potent inhibitors of bone resorption (IC50 approximately 9 and 0.7 microM for AM and DMA, respectively). Omeprazole (OM), a potent inhibitor of parietal cell K+/H+(-)ATPase, was a poor inhibitor of OC bone resorption (IC50 approximately 100 microM). These results strongly suggest that the Na+/H+ antiporter is the primary proton system used by OCs during bone resorption.  相似文献   

19.
The bacterial hyaluronan lyases (Hyals) that degrade hyaluronan, an important component of the extracellular matrix, are involved in microbial spread. Inhibitors of these enzymes are essential in investigation of the role of hyaluronan and Hyal in bacterial infections and constitute a new class of antibiotics against Hyal-producing bacteria. Recently, we identified 1,3-diacetylbenzimidazole-2-thione and related molecules as inhibitors of streptococcal Hyal. One of such compounds, 1-decyl-2-(4-sulfamoyloxyphenyl)-1-indol-6-yl sulfamate, was co-crystallized in a complex with Streptococcus pneumoniae Hyal and its structure elucidated. The resultant X-ray structure demonstrates that this inhibitor fits in the enzymatic active site via interactions resembling the binding mode of the natural hyaluronan substrate. X-ray structural analysis also indicates binding interactions with the catalytic residues and those of a catalytically essential hydrophobic patch. An IC50 value of 11 microM for Hyal from Streptococcus agalactiae (strain 4755) qualifies this phenylindole compound as one of the most potent Hyal inhibitors known to date. The structural data suggested a similar binding mode for N-(3-phenylpropionyl)-benzoxazole-2-thione. This new compound's inhibitory properties were confirmed resulting in discovery of yet another Hyal inhibitor (IC50 of 15 microM). These benzoxazole-2-thiones constitute a new class of inhibitors of bacterial Hyals and are well suited for further optimization of their selectivity, potency, and pharmacokinetic properties.  相似文献   

20.
Four new pterocarpans, atricarpan A (=(-)-1,2-dihydroxy-4-(hydroxymethyl)-3,9-dimethoxypterocarpan; 1), atricarpan B (=(-)-2,3-ethylenedioxy)-1,4-dihydroxy-9-methoxypterocarpan; 2), atricarpan C (=(-)-1,9-dimethoxypterocarpan-3-carboxylic acid; 3), and atricarpan D (=(-)-2,9-dimethoxy-4-(5-oxohexyl)pterocarpan; 4) were isolated from the BuOH extract of the whole plant of Zygophyllum eurypterum. The structure elucidations of those compounds were based primarily on 1D- and 2D-NMR analysis, including COSY, HMBC, and HMQC correlations. Compounds 1-4 also inhibited butyrylcholinesterase (BChE; EC 3.1.1.8) enzyme in a concentration-dependent manner with IC(50) values between 12.5-65.0 microM. Similarly, compounds 1 and 4 inhibited lipoxygenase (LOX; EC 1.13.11.12) and acetylcholinesterase (AChE; EC 3.1.1.7) enzymes with IC50 values of 13.5 and 20.5 muM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号