首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e-) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e- carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e- generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e- that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40+/-0.06 (S.D.)% of transmittance change per micromol P700+ m(-2) or 17.6+/-2.4 mM(-1) cm(-1). The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (+/-14% S.D.) is mainly caused by light-scattering properties of the leaf.  相似文献   

2.
Vello Oja 《BBA》2004,1658(3):225-234
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40±0.06 (S.D.)% of transmittance change per μmol P700+ m−2 or 17.6±2.4 mM−1 cm−1. The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (±14% S.D.) is mainly caused by light-scattering properties of the leaf.  相似文献   

3.
W. Rühle  A. Wild 《Planta》1979,146(5):551-557
In dispersive samples, like leaves, the absorbance of pigments is intensified. The intensification is due to a longer optical path through the dispersive sample. However, in chloroplast suspensions the optical path is not much longer than in clear solutions. The factor of intensification (=the lengthening of the optical path) is calculated by comparing the absorbance of leaves and the absorbance of chloroplast suspensions with equal pigment-content. This method also includes the influence of possible sieve effects which could decrease absorbance. The measurements are carried out with high- and low-light leaves of different thickness and pigment content. The intensification of absorbance was 2–2.5 fold. In highlight leaves it was somewhat less than in low-light leaves. The factor is better correlated to the pigment content than to the thickness of the leaves. The plot of absorbance versus the pigment content of the leaves shows that decreases with increasing pigment content. In contrast, chloroplast suspensions show a linear dependence as expected from Lambert-Beer's law. Thus, in leaves with very low pigment content the absorbance is intensified up to 6 fold while the intensification decreases with increasing absorbance. These results are in good agreement with measurements of Tsel'niker (1975) and with the theoretical predictions of Butler's formula (1960). Absorbance changes due to photooxidation of P-700 and cytochrome f in intact leaves are measured, and is used to calculate the amount of the oxidized components. Without correction for the values would be much greater than the amount actually present. The corrected data show that between 70 and 90% of the present P-700 and cytochrome f can be photooxidized in the intact leaf.Abbreviations A absorbance - factor of intensification=lengthening of the optical path - Chl chlorophyll a+b content - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FW fresh weight - HL high-light - LA leaf area - LL low-light - PhAR photosynthetically active radiation  相似文献   

4.
Host plants provide food, shelter, and mating habitats for herbivorous and parasitoid insects. Yet each plant species is a microhabitat with distinct chemical and physical attributes that may drive selection and diversification of insects. This study examines differences in courtship vibration signal transmission through leaves of three host plant species that vary in physical characteristics (leaf tissue density, leaf width and percent moisture) and how signal transmission relates to mating success for a parasitoid wasp. The vibration signals transmit with a longer duration and a higher relative amplitude in the host plant leaves of the species with the lowest leaf tissue density, which was also the plant type with the highest mating frequency. Host plants may be a selective force on courtship vibration signals and may contribute to the behavioral or genetic divergence of populations on different host plant species.  相似文献   

5.
Recent investigations have suggested that some plants are aposematic. Our understanding of how aposematism varies through plant ontogeny, however, is incomplete. Furthermore, the potential for lower leaf surfaces to signal to vertebrate herbivores that are viewing leaves from below has not been investigated. Here, we investigate ontogenetic changes in leaf colour in Pseudopanax crassifolius (Araliaceae), a tree species that is endemic to New Zealand. We demonstrate that P. crassifolius produces lateral leaf spines that peak in size during the sapling stage of development. Spots of brightly coloured tissues on the upper leaf surfaces may be warning signals. The intensity of these signals, however, peaked at the seedling stage, providing a dishonest signal of defence. Conversely, signals on lower leaf surfaces peaked in the sapling stage, providing an honest defensive signal later in ontogeny. Lateral leaf spines and all potential warning colours were absent in adults, after they grow above the reach of the largest known native megaherbivores (moa – Aves: Dinornithiformes). Overall, these results suggest that aposematism may vary predictably through plant ontogeny in response to the changing perspective of herbivores as plants grow vertically.  相似文献   

6.
Summary A study of the physiological significance of EPR signal was undertaken in the developing apical organs as well as in the top most leaf of a determinate type of plant,Triticum aestivum Cv. S 227 at various stages of vegetative and reproductive differentiation. Pour types of signals are reported: (a) a weak asymmetrical signal having 700 Gauss of width and g=2, the origin of which, is not clear; (b) a broad six peak signal also having g=2 which, as available evidence suggests, may be due to Mn++; (c) in association with Mn++ signal there are also other signals caused either by paramagnetic metals or by organic free radicals (FR); (d) at the centre of Mn++ signal there appears a free radical signal with g=2.0023. It is observed that the amplitude of Mn++ and free radical signal increases sharply in the shoot apex during its transformation from vegetative to reproductive state. The leaf also consistently records higher Mn++ and FR contents at all stages of reproductive differentiation. Synchronously with the above mentioned enhanced paramagnetic behaviour of the apex and of the leaf there is an upsurge in metabolic activity of the plant. The possible role of free radicals and Mn++ in energy transfer is discussed in relation to ascorbic acid turnover.  相似文献   

7.
An important aspect of the interaction of Pseudomonas syringae pv syringae with plant hosts is the perception of plant signal molecules that regulate expression of genes, such as syrB, required for synthesis of the phytotoxin, syringomycin. In this study, the leaves of sweet cherry (Prunus avium L.) were analyzed to determine the nature of the syrB-inducing activity associated with tissues of a susceptible host. Crude leaf extracts yielded high amounts of total signal activity of more than 12,000 units g-1 (fresh weight) based on activation of a syrB-lacZ fusion in strain B3AR132. The signal activity was fractionated by C18 reversed-phase high-performance liquid chromatography and found to be composed of phenolic glycosides, which were resolved in three regions of the high-performance liquid chromatography profile, and sugars, which eluted with the void volume. Two flavonol glycosides, quercetin 3-rutinosyl-4[prime]-glucoside and kaempferol 3-rutinosyl-4[prime]-glucoside, and a flavanone glucoside, dihydrowogonin 7-glucoside, were identified. The flavonoid glycosides displayed similar specific signal activities and were comparable in signal activity to arbutin, a phenyl [beta]-glucoside, giving rise to between 120 and 160 units of [beta]-galactosidase activity at 10 [mu]M. Although D-fructose exhibits intrinsic low level syrB-inducing signal activity, D-fructose enhanced by about 10-fold the signal activities of the flavonoid glycosides at low concentrations (e.g. 10 [mu]M). This demonstrates that flavonoid glycosides, which represent a new class of phenolic plant signals sensed by P. s. syringae, are in sufficient quantities in the leaves of P. avium to activate phytotoxin synthesis.  相似文献   

8.
Elevated partial pressures of atmospheric carbon dioxide, similar to numerous causes of plant stress, may alter leaf pigmentation and structure and thus would be expected to alter leaf optical properties. Hypotheses that elevated CO(2) pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers and partial shade at Oak Ridge, Tennessee under the following treatments: (1) ambient CO(2) pressure and air temperature (control); (2) CO(2) pressure approximately 30 Pa above ambient; (3) air temperatures 3 degrees C above ambient; and (4) elevated CO(2) and air temperature. Under elevated CO(2) or temperature, spectral reflectance, transmittance and absorptance in the visible spectrum (400-720 nm) tended to change in patterns that generally are associated with chlorosis, with maximum differences from the control near 700 nm. However, these changes were not significant at P=0.05. Although reflectance, transmittance and absorptance at 700 nm correlated strongly with leaf chlorophyll concentration, variability in chlorophyll concentration was greater within than among treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance throughout the 739-850 nm range in leaves that developed under elevated air temperature alone. This response might have resulted from effects of air temperature on leaf internal structure.  相似文献   

9.
The oxidation-reduction potential of the reaction-centre chlorophyll of Photosystem I (P700) in spinach chloroplasts was determined by using the ability of the reaction centre to photoreduce the bound ferredoxin and to photo-oxidize P700 on illumination at 20K as an indicator of the oxidation state of P700. This procedure shows that P700 is oxidized with Em (pH8.0)(mid-point redox potential at pH8.0)congruent to +375mV. Further oxidation of the chloroplast preparations by high concentrations of K3Fe(CN)6(10mM) in the presence of mediating dyes leads to the appearance of a large radical signal with an apparent Em congruent to +470mVA second, light-inducible, radical also appears over the same potential range. We propose that these signals are due to bulk chlorophyll oxidation and not, as was previously thought [Knaff & Malkin (1973) Arch. Biochem. Biophys. 159, 555-562], to reaction-centre oxidation. A number of optical techniques were used to determine Em of P700. Dual-wavelength spectroscopy (697-720nm) indicates Em congruent to +460-+480mV. The spectrum of the sample during the titration showed a large contribution to the signal by bulk chlorophyll oxidation, in agreement with the electron-paramagnetic-resonance results and those of Ke, Sugahara & Shaw [(1975) Biochim. Biophys. Acta 408, 12-25]. The light-induced absorbance change at 435 nm, usually attributed to P700, showed a potential dependence similar to that of bulk chlorophyll oxidation. Determination of Em of P700 on the basis of the appearance of the P700 signal in oxidized-versus-reduced difference spectra showed Em (pH8.0) congruent to +360mV. Measurements of the effect of potential on the irreversible photo-oxidation of P700 at 77K showed that P700 became oxidized in this potential range. We conclude that the reaction-centre chlorophyll of Photosystem I has Em (pH8.0) congruent to +375mV.  相似文献   

10.
The light-induced changes in the kinetics of the oxidation of photosystem I reaction center P700 in leaves of C3 and C4 plants, depending on the time of leaf adaptation to dark before the illumination were studied. The EPR 1 signal from oxidized centers P+700 was used to monitor the kinetics of P700 redox transients. Similar dependences of the light-induced changes in the kinetics of P700 versus the adaptation time were observed in leaves of three kinds of plants: bean, orange and maize. These data suggest that the deactivation of the Calvin cycle enzymes, which occurs 1-3 min after ceasing the illumination, is the main factor that causes the retardation of the light-induced oxidation of P700.  相似文献   

11.
The structural and functional characteristics of bean leaves (the content of chlorophyll, the rate of oxygen production, the slow fluorescence induction, and light-induced changes in the EPR signal I from oxidized reaction centers P700+) were investigated to obtain insight into the mechanism of influence of zinc chloride on the photosynthetic apparatus. Seedlings were grown on hydroponic medium containing ZnCl2 at concentrations from 10(-7) to 10(-3) M. At low concentrations of ZnCl2, a decrease in the content of chlorophyll per one unit of leaf mass was observed, while the rate of oxygen production per chlorophyll was increased. High concentrations of ZnCl2 in the hydroponic medium caused the slowed down the plant development and inhibited the light-induced production of oxygen. The changes in biophysical characteristics of leaves the parameter FM/FT of the slow fluorescence induction, and kinetics of redox transients of P700 induced by ZnCl2 were of similar character and correlated with the changes in photosynthetic activity. The data obtained demonstrate that structural and functional changes in the photosynthetic apparatus induced by the variations of growth conditions have adaptive character.  相似文献   

12.
Light-induced changes of EPR signals in Photosystem-I subchloroplast particles at temperatures between 225 and 13 °K showed that the rates of onset of photooxidation of P700 and photoreduction of iron-sulfur protein(s) are identical and instantaneous within the limits of resolution of our instruments. The fraction of the P700+ EPR signal that appears reversibly decreased with decreasing temperature down to 13 °K when the photoreaction was completely irreversible. At temperatures below 225 °K, the reversible fraction consists of two approximately equal portions with decay halftimes of approx. 3 and 75 s, respectively. Light-induced absorption changes due to P700 photooxidation at low temperatures monitored at 700 nm showed a similar kinetic pattern.

Since the reduced iron-sulfur protein signals can only be detected at very low temperature, their decay kinetics cannot be continuously monitored at higher temperatures. Therefore, exposure at appropriate temperatures and reaction times were selected according to the decay kinetics of P700+, after which decay was stopped by lowering the temperature to 13 °K and the P700+ and reduced iron-sulfur protein signals were recorded and compared. In the temperature range (225-13 °K) studied, the decay of P700+ and reduced iron-sulfur protein signals appears identical, suggesting that the two oppositely charged species recombine in the dark. These experiments support the view that iron-sulfur protein(s) is the reaction partner of P700 in the primary photochemical act of Photosystem I.  相似文献   


13.
Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r1 > 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases.  相似文献   

14.
Bukhov NG  Carpentier R 《Planta》2003,216(4):630-638
The relationship between the redox state of the photosystem (PS) I primary donor, P700, and thermal energy dissipation in PSI were examined in intact leaves using simultaneous measurements of absorbance changes at 830 nm and variations of thermal emission monitored by photoacoustic (PA) spectroscopy, respectively. A strict proportionality (close to a 1:1 ratio) was found between the magnitudes of P700 oxidation and a positive variable PA signal induced by far-red light of various irradiances under conditions favoring effective electron donation from PSII to PSI. The proportionality was observed also between the ratio of reduced P700 to the total P700 content and the ratio of the variable component to the total PA signal measured with modulated light of 695 nm. Those findings clearly revealed that in intact leaves, variable thermal dissipation in PSI is determined by the fraction of P700 in the reduced state. Diuron-treated leaves exposed to 45 degrees C in which PSI received electrons not from PSII, but from soluble reductants localized in the chloroplast stroma were also used. In such leaves, the linear relationship between the ratio of reduced P700 to the total P700 content and the ratio of the variable component to the total PA signal measured with modulated light of 700 nm has been found as well, but its slope was twice smaller than in untreated leaves. This is probably related to an increased contribution of thermal emission from inactive PSII to the steady-state level of the PA signal in diuron-treated leaves exposed to high temperatures. The results demonstrated that the yield of variable thermal dissipation is strictly dependent on the redox pressure applied to the photosystem. The above illustrates the strong photochemical energy quenching occurring when the reaction centers are in open state (reduced P700).  相似文献   

15.
Activities of noncyclic and alternative pathways of photosynthetic electron transport were studied in intact leaves of broad been (Vicia faba L.) seedlings grown under white light at irradiances of 176, 36, and 18 µmol quanta/(m2 s). Electron flows were followed from light-induced absorbance changes at 830 nm related to redox transformations of P700, the photoactive PSI pigment. The largest absorbance changes at 830 nm, induced by either white or far-red light, were observed in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s), which provides evidence for the highest concentration of PSI reaction centers per unit leaf area in these seedlings. When actinic white light of 1800 µmol quanta/(m2 s) was turned on, the P700 oxidation proceeded most rapidly in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s). The rates of electron transfer from PSII to PSI were measured from the kinetics of dark P700+ reduction after turning off white light. These rates were similar in leaves of all light treatments studied, and their characteristic reaction times were found to range from 9.2 to 9.5 ms. Four exponentially decaying components were resolved in the kinetics of dark P700+ reduction after leaf exposure to far-red light. A minor but the fastest component of P700+ reduction with a halftime of 30–60 ms was determined by electron transfer from PSII, while the three other slow components were related to the operation of alternative electron transport pathways. Their halftimes and relative magnitudes were almost independent on irradiance during plant cultivation. It is concluded that irradiance during plant growth affects the absolute content of PSI reaction centers in leaves but did not influence the rates of noncyclic and alternative electron transport.From Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 485–491.Original English Text Copyright © 2005 by Nikolaeva, Bukhov, Egorova.The article was translated by the authors.  相似文献   

16.
Carex acutiformis and Brachypodium pinnatum were grown with a uniform distribution of photosynthetic photon flux density (PFD) with height, and in a vertical PFD gradient similar to the PFD gradient in a leaf canopy. Distribution of organic leaf N and light-saturated rates of photosynthesis were determined. These parameters were also determined on plants growing in a natural vegetation stand. The effect of a PFD gradient was compared with the effect of a leaf canopy. In Brachypodium, plants growing in a vegetation stand had increasing leaf N with plant height. However, distribution of leaf N was not influenced by the PFD gradient treatment. The gradient of leaf N in plants growing in a leaf canopy was not due to differences within the long, mostly erect, leaves but to differences between leaves. In Carex, however, the PFD gradient caused a clear increase of leaf N with height in individual leaves and thus also in plants. The leaf N gradient was similar to that of plants growing in a leaf canopy. Leaf N distribution was not affected by nutrient availability in Carex. In most cases, photosynthesis was positively related to leaf N. Hence, lightsaturated rates of photosynthesis increased towards the top of the plants growing in leaf canopies in both species and, in Carex, also in the PFD gradient, thus contributing to increased N use efficiency for photosynthesis of the whole plant. It is concluded that in Carex the PFD gradient is the main environmental signal for leaf N allocation in response to shading in a leaf canopy, but one or more other signals must be involved in Brachypodium.  相似文献   

17.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

18.
Given its unique function in light-induced water oxidation and its susceptibility to photoinactivation during photosynthesis, photosystem II (PS II) is often the focus of studies of photosynthetic structure and function, particularly in environmental stress conditions. Here we review four approaches for quantifying or monitoring PS II functionality or the stoichiometry of the two photosystems in leaf segments, scrutinizing the approximations in each approach. (1) Chlorophyll fluorescence parameters are convenient to derive, but the information-rich signal suffers from the localized nature of its detection in leaf tissue. (2) The gross O(2) yield per single-turnover flash in CO(2)-enriched air is a more direct measurement of the functional content, assuming that each functional PS II evolves one O(2) molecule after four flashes. However, the gross O(2) yield per single-turnover flash (multiplied by four) could over-estimate the content of functional PS II if mitochondrial respiration is lower in flash illumination than in darkness. (3) The cumulative delivery of electrons from PS II to P700(+) (oxidized primary donor in PS I) after a flash is added to steady background far-red light is a whole-tissue measurement, such that a single linear correlation with functional PS II applies to leaves of all plant species investigated so far. However, the magnitude obtained in a simple analysis (with the signal normalized to the maximum photo-oxidizable P700 signal), which should equal the ratio of PS II to PS I centers, was too small to match the independently-obtained photosystem stoichiometry. Further, an under-estimation of functional PS II content could occur if some electrons were intercepted before reaching PS I. (4) The electrochromic signal from leaf segments appears to reliably quantify the photosystem stoichiometry, either by progressively photoinactivating PS II or suppressing PS I via photo-oxidation of a known fraction of the P700 with steady far-red light. Together, these approaches have the potential for quantitatively probing PS II in vivo in leaf segments, with prospects for application of the latter two approaches in the field.  相似文献   

19.
The evolution of visual warning signals is well known in animals but has received scant attention in plants. The coevolutionary hypothesis is the most influential hypothesis on warning signals in plants proposing that red and yellow leaf colours in autumn signal defensive strength to herbivores. So far, evidence in support of the hypothesis, which assumes a coevolutionary origin of autumnal leaf colours, is correlative and open to alternative explanations. We therefore tested the coevolutionary hypothesis experimentally by colouring the leaves either red or green of same-aged mountain ash (Sorbus aucuparia) individuals. We monitored the response of winged aphids to leaf colour using insect glue on branches with natural and artificial leaf colours in each individual. In contrast to the prediction of the coevolutionary hypothesis, aphid numbers did not differ between the individuals with artificial green or artificial red leaves. Likewise, at the within-plant level, aphids did not colonize branches with natural green leaves preferentially. However, we suggest that plants emitted warning signals because aphids colonized the hosts non-randomly. We found a strong positive correlation between aphid numbers and fruit production, suggesting an allocation trade-off between investment in plant defence and reproduction. Our study demonstrates that aphids use warning signals or cues in host selection, probably volatiles, but that they did not use leaf colour.  相似文献   

20.
When leaves of Bryophyllum marnierianum are detached from the plant, plantlets develop from primordia located at their margins. Leaves excised with a piece of stem attached do not produce plantlets. Severing the major leaf veins overcomes the inhibitory effect of the attached stem, indicating that the control agent is transmitted through the vascular system. A possible mechanism is that an inhibitory substance, possibly a known plant hormone, transported from the stem to the leaf, suppresses plantlet development. A number of hormones were tested for their ability to inhibit plantlet primordium development in whole isolated leaves. Auxins had no effect, indicating that apical dominance is not involved. The cytokinins zeatin, kinetin, and benzylaminopurine (BAP) strongly inhibited plantlet development, suggesting that they may be the or a factor involved in maintenance of plantlet primordium dormancy when the leaf is attached to the plant. This hypothesis was strongly supported by the finding that treatment of leaves attached to stems with a cytokinin antagonist (purine riboside) released the primordia from inhibition. In contrast to whole leaves, plantlet primordium development on leaf explants incubated on Murashige Skoog medium containing 3% sucrose was strongly stimulated by cytokinins. A possible explanation of these observations is that in whole leaves the cytokinin signal is transduced into an inhibitory signal whereas in the isolated primordium cytokinin has a direct stimulatory effect. The inhibitory cytokinin pathway must be dominant as long as the leaf is attached to the plant. A model is proposed which could explain these findings. This study points to a novel role of cytokinins in the maintenance of foliar plantlet primordium dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号