首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.  相似文献   

2.
A halothermotolerant Gram-positive spore-forming bacterium was isolated from petroleum reservoirs in Iran and identified as Bacillus licheniformis sp. strain ACO1 by phenotypic characterization and 16S rRNA analysis. It showed a high capacity for bioemulsifier production and grew up to 60°C with NaCl at 180 g l−1. The optimum NaCl concentration, pH and temperature for bioemulsifier production were 4% (w/v), 8.0, and 45°C, respectively. Although ACO1 did not utilize hydrocarbons, it had a high emulsifying activity (E 24 = 65 ± 5%) on different hydrophobic substrates. Emulsification was optimal while growing on yeast extract as the sole carbon source and NaNO3 as the nitrogen source. The efficiency of the residual oil recovery increased by 22% after in situ growth of B. licheniformis ACO1 in a sand-pack model saturated with liquid paraffin.  相似文献   

3.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

4.
Exiguobacterium acetylicum strain 1P (MTCC 8707) is a gram-positive, rod-shaped, yellow pigmented bacterium isolated from soil on nutrient agar plates at 4°C. The identity of the bacterium was arrived on the basis of the biochemical characterization, BIOLOG sugar utilization pattern and sequencing of the 16S rRNA gene. It grew at temperatures ranging from 4 to 42°C, with temperature optima at 30°C. It expressed multiple plant growth promotion attributes such as phosphate solubilization, indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN) production, differentially at suboptimal growth temperatures (15 and 4°C). At 15°C it solubilized phosphate (21.1 μg of P ml−1 day−1), and produced IAA (14.9 μg ml−1 day−1) in tryptophan amended media. Qualitative detection of siderophore production and HCN were possible at 15°C. At 4°C it retained all the plant growth promotion attributes. Seed bacterization with the isolate, positively influenced the growth and nutrient uptake parameters of wheat seedlings in glass house studies at suboptimal cold growing temperatures.  相似文献   

5.
A Gram-negative, short, rod-shaped bacterium, TSA1T, was isolated from forest soil collected at Kyonggi University, South Korea. Assessment of 16S rRNA gene sequence similarity indicated that the strain is related to Massilia niastensis 5516S-1T (98.3%), M. haematophila CCUG 38318T (97.9%), M. aerilata 5516S-11T (97.9%), M. tieshanensis TS3T (97.6%), and M. varians CCUG 3529T (97.1%). Colonies grown on Reasoner’s 2A agar at 30°C for 2 days were transparent, white, round, smooth, and glossy. The cells grew at 10–42°C (optimum: 25–37°C) and pH 5–9 (optimum: 5–9) and in 0–2% NaCl (optimum: 0–1%). TSA1T was able to grow on trypticase soy and nutrient agar, but not on Luria-Bertani or MacConkey agar. The strain was catalase- and oxidasepositive and able to degrade starch and casein, but not carboxymethyl cellulose. The predominant quinone of TSA1T was Q-8, the major fatty acids were summed feature 3 and C16:0, and the DNA G+C content was 66.7 mol%. Given these findings, we propose that this strain is a novel species of the genus Massilia. We suggest the name Massilia kyonggiensis sp. nov. (type strain, KACC 17471T =KEMB 9005-031T =JCM 19189T).  相似文献   

6.
An attempt has been made to isolate the bacteria capable of accumulating amino acids during the growth at low temperature from various natural sources. A psychrophilic strain P 145 forming glutamic acid at 5°C was obtained and identified as a Brevibacterium sp. The bacterium grew in the range of 0° to 37°C and exhibited the optimum growth at 15°C. The bacterium was defined as a facultative psychrophile.

The strain strictly required methionine only at above 28°C; below this temperature it grew normally without the amino acid. When methionine was added thiamine and biotin stimulated the growth of this strain at 28°C.

With the Brevibacterium sp. P 145 isolated from soil, the effect of incubation temperature on the extracellular amino acid accumulation has been examined from cultural and enzymological points of view. The strain was found to accumulate l-glutamic acid up to 5.88 mg/ml and l-alanine 0.38 mg/ml at 5°C, whereas it formed 0.21 mg/ml of l-glutamic acid and 2.54 mg/ml of l-alanine at 28°C.

The accumulation of l-alanine in the medium at 28°C seemed to be related to the thiamine requirement of the strain. In the case of thiamine deficiency, l-alanine was the main product in the culture at 28°C. When the incubation temperature was abruptly shifted from 28° to 5°C or from 5° to 28°C, the amino acid accumulation was also changed to that of the final temperature. l-Alanine dehydrogenase existed even in the cells grown at 5°C but was not active at this low temperature. These results were in accord with the informations obtained from cultural experiments.  相似文献   

7.
Summary An agar-liquefying Acinetobacter species capable of utilizing agar as sole source of carbon and energy was isolated from soil samples and the culture conditions were standardized for the maximal production of extracellular agarase. The bacterium was capable of liquefying an agar-plate within 3 days of incubation and produced extracellular agarase within a short period of time (16–18 h) when grown in defined mineral salts medium. Bacterium grew in the pH range 4.0–9.0, optimal at pH 7.0; temperature 25–40 °C and optimal at 37 °C. The agarase secreted by the Acinetobacter strain was inducible by agar and not repressed by other simple sugars when supplemented along with agar in the medium. The bacterium did not require NaCl for growth or production of agarase. The bacterium did not utilize other polysaccharides like κ-carrageenan, alginate, cellulose, and CMC. The activity staining of partially purified agarase preparations after native-PAGE and SDS PAGE revealed the presence of a single zone of clearance corresponding to the molecular weight 100 kDa, suggesting that it is a monomer. Neoagarobiose was the end product of agarose hydrolysis by this enzyme. The agarase was an endo-type glycosidase and belongs to Group-III β-agarase family.  相似文献   

8.
A Bacillus sp. strain DHT, isolated from oil-contaminated soil, grew and produced biosurfactant when cultured in variety of substrate at salinities of up to 100 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, various pure alkanes and PAHs as a sole carbon and energy source across a wide range of temperature and salinity. Over the range evaluated, the degradation of hydrocarbon and biosurfactant production was not influenced by salinity (0–10% wv−1) and temperature (30–45°C). The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as the best substrate and toluene as the poorest. From 16S rDNA analysis, strain DHT was related to Bacillus licheniformis.  相似文献   

9.
A novel halotolerant psychrotrophic gram-negative bacterium, strain 2pS, was isolated from lenses of water brine in Arctic permafrost (cryopeg). The optimal growth of the new strain was observed at 16–18°C; the maximal and minimal growth temperatures were 37°C and ?2°C, respectively. The pH growth range was 5.8 to 8.5 (optimum 6.5–7.5) and the range of medium salinity was 0 to 100 g/l (optimum 3–8 g/l NaCl). The strain 2pS did not produce acid from carbohydrates and utilized acetate, yeast extract, pyruvate, glutarate, fumarate, caproate, heptanoate, butyrate, malate, DL-lactate, citrate, L-proline, L-tyrosine, butanol, and dulcitol as the sole carbon and energy sources. The major fatty acids of the cell wall at optimal growth temperature were C18:1ω7 and C18:1ω9. The G+C DNA base content was 46.0 mol.%. Phylogenetic analysis of the 16S rRNA gene sequences showed that the studied strain was the closest (97% similarity) to Psychrobacter nivimaris DSM 16093T, a halotolerant psychrotrophic bacterium isolated from the Arctic sea’s ice. Genotypic and phenotypic differences of the new bacterium from closely related species lead to the conclusion that strain 2pS belongs to a novel species of the genus Psychrobacter: Psychrobacter muriicola sp. nov.  相似文献   

10.
11.
A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l−1) and MgCl2·6H2O (3 g l−1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45°C, with an optimum between 35 and 40°C. The pH range for growth was 5.7–9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95–96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T).  相似文献   

12.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

13.
A high butanol producing mutant strain of Clostridium acetobutylicum ATCC 4259 was obtained by chemical mutagenesis. Both mutant and parent strains were evaluated for butyrate uptake using the culture effluents of solventogenic fermentor-2 of the two-fermentor continuous system. Batch incubation of fermentor-2 culture effluents at 37?°C indicated lower butyrate uptake rates for mutant and parent strain, at 0.05 and 0.03?g?l?1?h?1, respectively. Increased butyrate uptake rates of 0.33 and 0.26 g l?1 h?1 for mutant and parent strain, respectively, were observed when effluents were batch incubated at lower temperature of 30?°C. Butyrate conversion efficiency, at 5?±?0.1 g l?1 of externally added butyrate, were 98.8% and 96.9% for mutant and parent strain, respectively. Butyrate up to the externally added concentration of 11.4 g l?1 did not inhibit butyrate uptake. The maximum butyrate consumption at a slightly reduced uptake rate was seen at 10.2 g l?1 butyrate concentration at 27?°C. Based on the results under different temperatures, the electron flow pattern has been computed and the mechanism for butyrate uptake has been hypothesized.  相似文献   

14.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

15.
A novel strictly anaerobic bacterium designated SPDX02-08T was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1–2 × 2–6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08T grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08T completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08T required yeast extract to oxidize formate and H2 but did not grow autotrophically on H2. Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08T were iso-C15:0, C15:0, and C16:0. Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08T belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08T and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08T is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937T = JCM 16410T). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08T is HM056226.  相似文献   

16.
A Gram-negative, motile, non-spore forming, rod shaped aerobic bacterium, designated strain SSW084T, was isolated from a surface seawater sample collected at Espalamaca (38°33′N; 28°39′W), Azores. Growth was found to occur from 15 to 40 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 7.0) and with 25–100 % seawater or 0.5–7.0 % NaCl in the presence of Mg2+ and Ca2+; no growth was found with NaCl alone. Colonies on seawater nutrient agar were observed to be punctiform, white, convex, circular, smooth, and translucent. Strain SSW084T did not grow on Zobell marine agar and tryptic soy agar even when seawater supplemented. The major respiratory quinone was found to be Q-10 and the G + C content was determined to be 61.9 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain SSW084T belongs to the genus Roseovarius and that its closest neighbours are Roseovarius tolerans EL-172T, Roseovarius mucosus DFL-24T and Roseovarius lutimaris 112T with 95.7, 95.4 and 95.3 % sequence similarity respectively. The remaining species of Roseovarius showed <95 % similarity. The polar lipids of strain SSW084T were determined to be phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified lipid and one unidentified aminolipid. The major fatty acids identified were identified as C18:1 ω7c (52.5 %) and C16:0 (13.8 %). On the basis of phenotypic, molecular and chemotaxonomic characteristics, strain SSW084T is considered to represent a novel species of the genus Roseovarius, for which Roseovarius azorensis sp. nov is proposed. The type strain is SSW084T (=KCTC 32421T = MTCC 11812T).  相似文献   

17.
Using a new culture method for unculturable soil bacteria, strain NB5T was isolated from forest soil at Kyonggi University, and characterized taxonomically on the basis of 16S rRNA gene sequence as well as phenotypic and chemotaxonomic characteristics. The novel strain was a Gram- and catalase-positive, rod-shaped bacterium, which grew in the pH range 6.0–9.5 (optimum, 6.5–9.5) and at temperatures between 15°C and 45°C (optimum, 25–40°C). Growth was possible at 0–5% NaCl (optimum, 0% to 3%) in nutrient, Luria-Bertani, and trypticase soy broths (TSB), as well as R2A medium (with optimal growth in TSB). A phylogenetic analysis of the 16S rRNA gene sequence showed that the novel strain was affiliated with the genus Paenibacillus and had 96.8% and 96.5% similarity to P. nanensis MX2-3T and P. agaridevorans DSM 1355T, respectively. The predominant menaquinone in NB5T was MK-7; the major fatty acids were anteiso-C15:0 and iso-C16:0; and the DNA G+C content was 54.5 mol%. We propose this strain as a novel species of the genus Paenibacillus, and suggest the name Paenibacillus pinesoli sp. nov. (type strain, KACC 17472T=KEMB 9005-025T=JCM 19203T).  相似文献   

18.
A novel Gram-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Qurugöl Lake near Tabriz city. The bacterium grew chemoorganolheterotrophically and chemolithoautotrophically. However, photo-organoheterotrophic, photo-lithoautotrophic and fermentative growth could not be demonstrated. The presence of photosynthesis genes pufL and pufM was not shown and photosynthesis pigments were not formed. Strain RCRI19T grew without NaCl and tolerated up to 3 % NaCl. Growth occurred at pH 6–9 (optimum, pH 7) and 15–55 °C (optimum 40–45 °C). Vitamins were not required for growth. The major fatty acids are C18:1 ω7C, 11-methyl C18:1 ω7C, C18:0 3-OH. The predominant respiratory quinone is ubiquinone Q-10. The G+C content of genomic DNA is 65.9 mol%. Analysis of 16S rRNA sequences showed that strain RCRI19T has the highest similarities with uncultured environmental sequences followed by members of the genera Rhodobacter (≤95.75 %), Haematobacter (≤95.53 %), Gemmobacter (≤95.17 %) and Falsirhodobacter (94.60 %) in the family Rhodobacteraceae. DNA–DNA relatedness between strain RCRI19T and the closest phylogenetically related strain, Rhodobacter blasticus LMG 4305T, was 20 %. Based on its phenotypic and chemotaxonomic characteristics and considering that it does not form photosynthetic pigments and is unable to grow phototrophically, it is concluded that strain RCRI19T cannot be included into the genus Rhodobacter and any of the other related genera. Therefore, we propose to place the new bacterium into a new genus and species for which the name Tabrizicola aquatica gen. nov. and sp. nov. is proposed. The type strain is RCRI19T (=BCCM/LMG 25773= JCM 17277= KCTC 23724T).  相似文献   

19.
A strain designated as S85T was isolated from a seaweed collected from coastal area of Chuuk State in Micronesia. The strain was gram-negative, rod-shaped, and non-motile and formed yellow colonies on the SWY agar (0.2 % yeast extract and 1.5 % agar in seawater) and Marine agar 2216. The strain grew at pH 5–9 (optimum, pH 8), at 15–40 °C (optimum, 25–28 °C), and with 1–9 % (w/v) NaCl (optimum, 3 %). The phylogenetic analysis based on 16S rRNA gene sequence showed that strain S85T was related to Lutibacter litoralis CL-TF09T and Maritimimonas rapanae A31T with 91.4 % and with 90.5 % similarity, respectively. The dominant fatty acids were iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH, C16:0 3-OH and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The major isoprenoid quinone was MK-6. The DNA G+C content of the type strain was 34.6 mol %. The major polar lipids were phosphatidylethanolamine, an unknown glycolipid and two unknown polar lipids. Based on this polyphasic taxonomic data, strain S85T stands for a novel species of a new genus, and we propose the name Ochrovirga pacifica gen. nov., sp. nov. The type strain of O. pacifica is S85T (=KCCM 90106 =JCM 18327T).  相似文献   

20.
A moderately thermophilic, strictly anaerobic, chemoautotrophic bacterium, designated strain HS1857T, was isolated from a deep-sea hydrothermal vent at the Noho site in the Mid-Okinawa Trough. Strain HS1857T grew between 35 and 63 °C (optimum 55 °C), in the presence of 10–55 g l?1 NaCl (optimum 25 g l?1), and pH 5.5–7.1 (optimum 6.4). Growth occurred with molecular hydrogen as the electron donor and elemental sulfur, nitrate, or selenate as the electron acceptors. Formate could serve as an alternative electron donor with nitrate as an electron acceptor. During growth with nitrate as the electron acceptor, strain HS1857T produced ammonium and formed a biofilm. CO2 was utilized as the sole carbon source. The G + C content of the genomic DNA was 33.2 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain HS1857T is a member of the order Nautiliales, showing a sequence similarity of 95.0% with Lebetimonas acidiphila Pd55T. The fatty acid composition was similar to that of L. acidiphila, which was dominated by C18:0 (47.0%) and C18:1 (23.7%). Based on the genomic, chemotaxonomic, phenotypic characteristics, the name Lebetimonas natsushimae sp. nov., is proposed. The type strain is HS1857T (= NBRC 112478T = DSM 104102T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号