首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We examined the presence of hormone-sensitive lipase (HSL) in mammary glands of virgin, pregnant (12, 20, and 21 days), and lactating (1 and 4 days postpartum) rats. Immunohistochemistry with antibody against rat HSL revealed positive HSL in the cytoplasm of both alveolar epithelial cells and adipocytes. In virgin rats, immunoreactive HSL was observed in mammary adipocytes, whereas diffuse staining was found in the epithelial cells. Positive staining for HSL was seen in the two types of cells in pregnant and lactating rats. However, as pregnancy advanced, the staining intensity of immunoreactive HSL increased in the epithelial cells parallel to their proliferation, attaining the maximum during lactation. An immunoreactive protein of 84 kDa and a HSL mRNA of 3.3. kb were found in the rat mammary gland as in white adipose tissue. Both HSL protein and activity were lower in mammary glands from 20 and 21 day pregnant rats than from those of virgin rats, although they returned to virgin values on days 1 and 4 of lactation. Mammary gland HSL activity correlated negatively to plasma insulin levels. Immunoreactive HSL and HSL activity were found in lactating rats' milk. The observed changes indicate an active role of HSL in mammary gland lipid metabolism.  相似文献   

2.
1. The effects of starvation and refeeding on the disposal of oral [14C]triolein between 14CO2 production and 14C-lipid accumulation in tissues of virgin rats, lactating rats and lactating rats with pups removed were studied. 2. Starvation (24 h) increased 14CO2 production in lactating rats and lactating rats with pups removed to values found in virgin rats. This increase was accompanied by decreases in 14C-lipid accumulation in mammary gland and pups of lactating rats and in white and brown adipose tissue of lactating rats with pups removed. 3. Short-term (2 h) refeeding ad libitum decreased 14CO2 production in lactating rats and lactating rats with pups removed, and restored the 14C-lipid accumulation in mammary glands plus pups and in white and brown adipose tissue respectively 4. Insulin deficiency induced with mannoheptulose inhibited the restoration of 14C-lipid accumulation in white adipose tissue on refeeding of lactating rats with pups removed, but did not prevent the restoration of 14C-lipid accumulation in mammary gland. 5. Changes in the activity of lipoprotein lipase in mammary gland and white adipose tissue paralleled the changes in 14C-lipid accumulation in these tissues. 6. It is concluded that 14C-lipid accumulation in mammary gland may not be affected by changes in plasma insulin concentration and that it is less sensitive to starvation than is lipogenesis or lactose synthesis. This has the advantage that the milk lipid content can still be maintained from hepatic very-low-density lipoprotein for a period after withdrawal of food. The major determinant of the disposal of oral 14C-triolein appears to be the total tissue activity of lipoprotein lipase. When this is high in mammary gland (fed lactating rats) or white adipose tissue (fed lactating rats with pups removed), less triacylglycerol is available for the muscle mass and consequently less is oxidized.  相似文献   

3.
Tumour necrosis factor (TNF) has previously been shown to decrease lipoprotein lipase (LPL) activity and mRNA levels in 3T3-L1 cells and in adipose tissue from rats and guinea pigs when injected in vivo, but not to alter LPL activity in human adipocytes incubated in vitro. The effect of recombinant human TNF on LPL activity and mRNA levels in rat epididymal adipose tissue incubated in vitro was examined. LPL activity and mRNA levels fell in adipose tissue taken from fed rats and incubated in Krebs-Henseleit bicarbonate medium with glucose. The addition of insulin and dexamethasone prevented these falls. TNF (400 ng/ml) produced a fall of approx. 50% in LPL activity after 2 h of incubation and of approx. 30% in LPL mRNA levels after 3 h. TNF did not decrease LPL activity in isolated adipocytes. These results demonstrate that rat adipose tissue incubated in vitro is responsive to TNF whereas isolated adipocytes are not.  相似文献   

4.
5.
Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity in adipose tissue and development of hypertriglyceridemia. To determine how a condition of severe insulin deficiency affects mammary gland LPL activity and mRNA expression during late pregnancy, streptozotocin (STZ) treated (40 mg/kg) and non-treated (control) virgin and 20 day pregnant rats were studied. In control rats, both LPL activity and mRNA were higher in pregnant than in virgin rats. When compared to control rats, STZ-treated rats, either pregnant or virgin, showed decreased LPL activity and mRNA content. Furthermore, mammary gland LPL activity was linearly correlated with mRNA content, and either variable was linearly correlated with plasma insulin levels. Thus, insulin deficiency impairs the expression of LPL in mammary glands, revealing the role of insulin as a modulator of the enzyme at the mRNA expression level.  相似文献   

6.
The effects of dexamethasone (dex) on newly differentiated adipocytes in primary culture derived from mesenteric, retroperitoneal, epididymal, and inguinal subcutaneous adipose tissues of male rats were studied. The degree of differentiation was similar in these adipose precursor cells derived from different regions as assessed by lipoprotein lipase (LPL) activity, an early marker of adipocyte differentiation. LPL activity was increased by addition of dex, and no differences in degree of activation were observed in cells from different adipose tissue regions. Development of both basal and isoproterenol-stimulated lipolysis was also similar in adipose precursor cells from different adipose tissue regions. Dex addition enhanced the isoproterenol-stimulated lipolysis with no regional differences. Studies of binding of [3H]-dex showed no regional differences in either binding affinity or maximal binding capacity. It is concluded that dex stimulates both LPL activity and lipolytic activity in newly differentiated rat adipocytes in primary culture. This seems, however, not to vary in magnitude in cells obtained from different adipose tissue regions. This might be due to the apparent similarity of number and affinity of glucocorticoid binding sites. Regional variations in glucocorticoid regulated LPL and lipolytic activity in adipose tissue might therefore not be due to inherent differences between adipocytes.  相似文献   

7.
We report here a study of the developmental and genetic control of tissue-specific expression of lipoprotein lipase, the enzyme responsible for hydrolysis of triglycerides in chylomicrons and very low density lipoproteins. Lipoprotein lipase (LPL) mRNA is present in a wide variety of adult rat and mouse tissues examined, albeit at very different levels. A remarkable increase in the levels of LPL mRNA occurs in heart over a period of several weeks following birth, closely paralleling developmental changes in lipase activity and myocardial beta-oxidation capacity. Large increases in LPL mRNA also occur during differentiation of 3T3L1 cells to adipocytes. As previously reported, at least two separate genetic loci control the tissue-specific expression of LPL activity in mice. One of the loci, controlling LPL activity in heart, is associated with an alteration in LPL mRNA size, while the other, controlling LPL activity in adipose tissue, appears to affect the translation or post-translational expression of LPL. To examine whether these genetic variations are due to mutations of the LPL structural locus, we mapped the LPL gene to a region of mouse chromosome 8 using restriction fragment-length polymorphisms and analysis of hamster-mouse somatic cell hybrids. This region is homologous to the region of human chromosome 8 which contains the human LPL gene as judged by the conservation of linked genetic markers. Genetic variations affecting LPL expression in heart cosegregated with the LPL gene, while variations affecting LPL expression in adipose tissue did not. Furthermore, Southern blotting analysis indicates that LPL is encoded by a single gene and, thus, the genetic differences are not a consequence of independent regulation of two separate genes in the two tissues. These results suggest the existence of cis-acting elements for LPL gene expression that operate in heart but not adipose tissue. Our results also indicate that two genetic mutations resulting in deficiencies of LPL in mice, the W mutation on chromosome 5 and the cld mutation on mouse chromosome 17, do not involve the LPL structural gene locus. Finally, we show that the gene for hepatic lipase, a member of a gene family with LPL, is unlinked to the gene for LPL. This indicates that combined deficiencies of LPL and hepatic lipase, observed in humans as well as in certain mutant strains of mice, do not result from focal disruptions of a cluster of lipase genes.  相似文献   

8.
AIM: The aim of this study was to estimate the lipolytic activity of the human growth hormone variant, 20-kD human growth hormone (20K-hGH). METHODS: Obese KV-A(y) mice were given daily subcutaneous injections of 20K-hGH (0.25, 0.5, 1.0 mg/kg), 22K-hGH (0.25 mg/kg) or saline as a control for 2 weeks. Body composition (fat, water and protein), lipolysis and lipoprotein lipase (LPL) activity were measured 24 h after the final injection. RESULTS: Both growth hormone isoforms significantly reduced relative fat pad and whole body lipids. In addition, 20K-hGH produced an inhibition of LPL activity in adipose tissue and stimulated lipolysis in adipocytes. CONCLUSION: These data strongly suggest that inhibition of LPL activity in adipose tissue and stimulation of lipolysis in adipocytes by 20K-hGH treatment reduce adipose tissue mass, resulting in body fat reduction.  相似文献   

9.
Lipoprotein lipase (LPL) and pOb24 mRNAs are known to be early markers of adipose cell differentiation. Comparative studies of the expression of pOb24 and LPL genes during adipose conversion of Ob1771 preadipocyte cells and in mouse adipose tissue have shown the following: 1) the expression of both genes takes place at confluence; this event can also be triggered by growth arrest of exponentially growing cells at the G1/S stage of the cell cycle; 2) In contrast to glycerol-3-phosphate dehydrogenase mRNA, the emergence of pOb24 and lipoprotein lipase mRNAs requires neither growth hormone or tri-iodothyronine as obligatory hormones nor insulin as a modulating hormone; 3) in mouse adipose tissue, pOb24 mRNA is present at a high level in stromal-vascular cells and at a low level in mature adipocytes, and in contrast LPL mRNAs are preferentially expressed in mature adipocytes. Thus, these two genes do not appear to be regulated in a similar manner, as also shown by the differential inhibition of their expression by tumor necrosis factor (TNF) and transforming growth factor-beta (TGF-beta).  相似文献   

10.
Activation of protein kinase A by catecholamines inhibits lipoprotein lipase (LPL) activity through the elaboration of an RNA binding complex, which inhibits LPL translation by binding to the 3'-untranslated region of the LPL mRNA. To better define this process, we reconstituted the inhibitory RNA binding complex in vitro and demonstrated that the K homology (KH) domain of A kinase anchor protein (AKAP) 121/149 plays a vital role in the inhibition of LPL translation. Inhibition of LPL translation occurred in vitro only when the Calpha subunit, R subunit, and AKAP 149 were present. Using different glutathione-S-transferase fusion proteins of AKAP 149, sequences containing the KH domain were required for inhibition of LPL translation, and the inhibition of AKAP 121 expression in 3T3-F442A adipocytes with short interfering RNA resulted in loss of epinephrine-mediated translation inhibition. After epinephrine injection into mice, LPL activity was inhibited in white adipose tissue but not in brown adipose tissue (BAT) or muscle. LPL activity and synthetic rate were inhibited in vitro by the addition of epinephrine to 3T3-F442A adipocytes, but there was no effect in L6 muscle cells and cultures of brown adipocytes. Corresponding with these differences in LPL translation, AKAP 121 protein and mRNA were abundantly expressed in mouse white adipose tissue, but was either very low or undetectable in BAT and muscle. Thus, AKAP 121/149 contains a KH region that is essential to the translation inhibition of LPL in response to epinephrine. BAT and muscle do not express significant AKAP 121/149, and this likely explains some of the tissue-specific differences in LPL regulation.  相似文献   

11.
Previous studies have demonstrated that cachectin/tumor necrosis factor (TNF) inhibits lipoprotein lipase (LPL) activity in cultures of 3T3-L1 cells. To determine whether TNF also inhibits LPL in human adipocytes, primary cultures of isolated human adipocytes were exposed to a spectrum of concentrations of recombinant human TNF. TNF concentrations up to 1000 pM had no effect on either LPL activity or LPL immunoreactive mass in the human adipocytes. Specific binding of 125I-labeled TNF was demonstrated in human adipocytes, and a TNF concentration of 100 pM competed for approximately 50% of the 125I-labeled TNF binding sites. In contrast, the same TNF in the same concentrations progressively inhibited LPL activity and immunoreactive mass in 3T3-L1 cells. Thus, human adipocytes respond to TNF in a different manner than 3T3-L1 cells. TNF may not cause the cachexia of cancer or chronic infection by directly inhibiting LPL in adipose tissue.  相似文献   

12.
Tumour necrosis factor alpha (cachectin) was administered to virgin, lactating and litter-removed rats, and subsequent disposal of an oral [1-14C]triolein (glycerol tri[1-14C]oleate) load examined. Absorption of the lipid and 14CO2 production were significantly depressed in all three groups. [14C]Lipid accumulation was decreased in carcass, liver and adipose tissue (brown and white) of virgin and litter-removed rats and the mammary gland of lactating rats. The plasma triacylglycerol concentration was increased in all three groups, and lipoprotein lipase activity was decreased in the white adipose tissue of virgin and litter-removed animals and in the mammary gland of lactating animals. Some, but not all, of these effects mimic tumour burden in the same physiological states [Evans & Williamson (1988) Biochem. J. 252, 65-72].  相似文献   

13.
1. The effects of various treatments to alter either plasma prolactin (bromocryptine administration or removal of litter) or the metabolic activity of the mammary gland (unilateral or complete teat sealing) on the disposal of oral [14C]lipid between 14CO2 production and [14C]lipid accumulation in tissues of lactating rats were studied. In addition, the rates of lipogenesis in vivo were measured in mammary gland, brown and white adipose tissue and liver. 2. Bromocryptine administration lowered plasma prolactin, but did not alter [14C]lipid accumulation in mammary gland or in white and brown adipose tissue. 3. In contrast, complete sealing of teats results in no change in plasma prolactin, but a 90% decrease in [14C]lipid accumulation in mammary gland and a 4-fold increase in white and brown adipose tissue. The rate of lipogenesis in mammary gland was decreased by 95%, but there was no change in the rate in white and brown adipose tissue. Unilateral sealing of teats resulted in a decrease in [14C]lipid accumulation in white adipose tissue. 4. Removal of the litter for 24 h (low prolactin) produced a similar pattern to complete teat sealing, except that there was a 6-fold increase in lipogenesis in white adipose tissue. Re-suckling for 5 h increased plasma prolactin, but did not alter the response seen in litter-removed lactating rats. 5. Changes in lipoprotein lipase activity and in plasma insulin paralleled the reciprocal changes in [14C]lipid accumulation in white and brown adipose tissue and in mammary gland. 6. It is concluded that the plasma insulin is more important than prolactin in regulating lipid deposition in adipose tissue during lactation, and that any effects of prolactin must be indirect.  相似文献   

14.
Nutritional regulation of lipoprotein lipase in guinea pig tissues   总被引:2,自引:0,他引:2  
Glucose transport in guinea pig adipocytes has been shown to be markedly resistant to stimulation by insulin. Lipoprotein lipase is another transport catalyst in adipose tissue which is believed to be regulated by insulin. We have therefore studied how feeding-fasting affects lipoprotein lipase activity in guinea pig tissues. There was an even more marked decrease in adipose tissue lipoprotein lipase activity on fasting in guinea pigs (10-20 fold) than in rats or mice (4-5 fold). In adipocytes, the activity decreased only 2.5-4.5 fold; most of the change was in extracellular lipoprotein lipase. On glucose refeeding, the activity was rapidly restored. In the first 4 hours after glucose administration extracellular lipoprotein lipase activity increased to more than 10 times the amount present in adipocytes. After cycloheximide, lipoprotein lipase activity decreased with a half-life of 22 min. It is concluded that lipoprotein lipase is rapidly produced and turned over in guinea pig adipose tissue, and that the system is quite sensitive to feeding-fasting. In contrast to adipose tissue, there was no significant change in lipoprotein lipase activity in any other tissue on fasting. There was a strong correlation between the activities in heart and diaphragm muscle, but this correlation was independent of feeding-fasting.  相似文献   

15.
Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.  相似文献   

16.
乳腺是哺乳动物哺育子代的重要器官,其通过分泌乳汁给子代提供充足的营养物质,乳腺的健康发育对泌乳以及提高子代的存活率具有重要意义.脂肪组织是乳腺重要的组成部分,在乳腺发育和循环重构过程中,乳腺脂肪组织随之呈现规律性的形态和功能变化,乳腺脂肪组织的动态变化是乳腺循环性发育重构的重要特征.脂肪组织能够分泌特殊的"脂肪因子"调节上皮细胞的功能和乳腺的发育,并且存在与上皮细胞相互转换的潜能.本综述综合近年来乳腺脂肪组织的相关研究进展,为后续研究脂肪组织调节乳腺发育的机制提供基础数据.  相似文献   

17.
Lipoprotein lipase activity in intact epididymal adipose tissue of fasted rats increased rapidly after treatment with insulin in vivo. In contrast, lipoprotein lipase activity in adipocytes isolated from the contralateral fat pads remained essentially unchanged. When adipocytes were incubated for 30 min at ambient temperature in vitro, about 2 times more lipoprotein lipase activity was found in the medium of cells from insulin-treated rats than in medium from cells of control animals. Following insulin treatment, extracts of tissue acetone powders separated by gel chromatography showed increases in both enzyme activity fractions obtained (designated lipoprotein lipase a and b). However, no consistent differences were observed between fractions derived from adipocyte acetone powders of insulin-treated and control animals. All the observed effects of insulin on lipoprotein lipase activity were abolished by cycloheximide treatment in vivo. These data indicate that following insulin treatment, increased lipoprotein lipase activity in adipose tissue results from enhanced enzyme secretion by the fat cell and subsequent accumulation in the tissue, thus implicating the adipocyte secretory mechanism as a major site of regulation of lipoprotein lipase activity in adipose tissue.  相似文献   

18.
Acylation-stimulating protein (ASP) increases triglyceride (TG) storage (fatty acid trapping) in adipose tissue and plays an important role in postprandial TG clearance. We examined the capacity of ASP and insulin to stimulate the activity of lipoprotein lipase (LPL) and the trapping of LPL-derived nonesterified fatty acid (NEFA) in 3T3-L1 adipocytes. Although insulin increased total LPL activity (secreted and cell-associated; P < 0.001) in 3T3-L1 adipocytes, ASP moderately stimulated secreted LPL activity (P = 0.04; 5% of total LPL activity). Neither hormone increased LPL translocation from adipocytes to endothelial cells in a coculture system. However, ASP and insulin increased the V(max) of in situ LPL activity ([(3)H]TG synthetic lipoprotein hydrolysis and [(3)H]NEFA incorporation into adipocytes) by 60% and 41%, respectively (P 相似文献   

19.
Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  相似文献   

20.
1. The effect of tumour burden on lipid metabolism was examined in virgin, lactating and litter-removed rats. 2. No differences in food intake or plasma insulin concentrations were observed between control animals and those bearing the Walker-256 carcinoma (3-5% of body wt.) in any group studied. 3. In virgin tumour-bearing animals, there was a significant increase in liver mass, blood glucose and lactate, and plasma triacylglycerol; the rate of oxidation of oral [14C]lipid to 14CO2 was diminished, and parametrial white adipose tissue accumulated less [14C]lipid compared with pair-fed controls. 4. These findings were accompanied by increased accumulation of lipid in plasma and decreased white-adipose-tissue lipoprotein lipase activity. 5. In lactating animals, tumour burden had little effect on the accompanying hyperphagia or on pup weight gain; tissue lipogenesis was unaffected, as was tissue [14C]lipid accumulation, plasma [triacylglycerol] and white-adipose-tissue and mammary-gland lipoprotein lipase activity. 6. On removal (24 h) of the litter, the presence of the tumour resulted in decreased rates of lipogenesis in the carcass, liver and white and brown adipose tissue, decreased [14C]lipid accumulation in white adipose tissue, but increased accumulation in plasma and liver, increased plasma [triacylglycerol] and decreased lipoprotein lipase activity in white adipose tissue. 7. The rate of triacylglycerol/fatty acid substrate cycling was significantly decreased in white adipose tissue of virgin and litter-removed rats bearing the tumour, but not in lactating animals. 8. These results demonstrate no functional impairment of lactation, despite the presence of tumour, and the relative resistance of the lactating mammary gland to the disturbance of lipid metabolism that occurs in white adipose tissue of non-lactating rats with tumour burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号