首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human cytomegalovirus (CMV) UL54 pol exonuclease domain II mutation, D413A, found in a clinical specimen, conferred ganciclovir (GCV) and cidofovir resistance but not foscarnet resistance when incorporated into laboratory strain T2294. After several passages without drug, mutation was observed in five of eight plaques of T2294, and its plating efficiency under foscarnet was increased ~30-fold over that of a control strain. When T2294 was serially passed under maribavir (MBV), phenotypic changes and viral UL97 mutations were detected by passage 5, much earlier than previously reported for other CMV strains. By passage 15, mutations included two cases of H411Y, one each of H411L and H411N, three of T409M, five of V353A, and one of L397R. Five instances of codon 409 or 411 mutations evolved into double mutations including V353A. Marker transfer experiments showed H411N/Y/L to confer 9- to 70-fold-increased MBV resistance and combinations of H411L/Y and V353A to confer >150-fold-increased MBV resistance, but no GCV resistance. These findings are consistent with defective exonuclease activity of the pol D413A mutant T2294, leading to the accelerated evolution of UL97 mutations under MBV. This recapitulated the known resistance mutations V353A, L397R, and T409M; suggested their relative frequency; and identified new ones at codon 411. These UL97 mutations predict an MBV binding region overlapping the kinase ATP binding site and located upstream of known GCV resistance mutations. The existence of viable pol D413A mutants may facilitate the selection of additional drug resistance mutations in vivo and the study of these mutations in vitro.  相似文献   

2.
Multiple human cytomegalovirus (HCMV) strains frequently coexist in patients with AIDS, and chronic ganciclovir treatment may favor the emergence of ganciclovir-resistant viral mutants. We report the molecular and biochemical characterization of a HCMV ganciclovir-resistant strain (VR3480) previously recovered from a patient with AIDS who was undergoing multiple courses of ganciclovir treatment (G. Gerna, F. Baldanti, M. Zavattoni, A. Sarasini, E. Percivalle, and M. G. Revello, Antiviral Res. 19:333-345, 1992). Ganciclovir resistance of strain VR3480 was related to impaired ability to monophosphorylate the drug, as indicated by the finding that ganciclovir phosphorylation values for VR3480 were 30% of those shown by the HCMV reference strain AD169 in an in vitro activity assay. Sequencing of the UL97 gene of VR3480, which encodes the viral kinase responsible for ganciclovir phosphorylation, showed an in-frame deletion of three nucleotides resulting in the loss of a leucine at position 595 in the polypeptide. Mutant VR3480 UL97 DNA was able to transfer resistance to the AD169 strain in marker rescue experiments. Analysis of virus isolates and blood polymorphonuclear leukocyte samples spanning the 2-year follow-up period of the patient showed that ganciclovir-resistant strain VR3480 arose ex novo during prolonged antiviral treatment and accounted for the majority of virus load circulating in blood during the period of clinical resistance to ganciclovir treatment.  相似文献   

3.
There is no existing data on UL97 mutation in human cytomegalovirus (HCMV) isolates obtained from individuals who have never been exposed to ganciclovir (GCV). UL97 codons 439 to 645 from 61 CMV isolates from 61 immunocompetent Japanese infants and children were sequenced directly. No known GCV resistance mutations were found, meaning that the UL97 mutation had resulted from the use of GCV. On the other hand, a mutation at codon 605 (D to E) was frequently identified (56/61: 91.8%). This could be a genetic marker for HCMV in East Asian counties, because of its low prevalence in the strains of HCMV circulating in Western countries.  相似文献   

4.
Coat protein-mediated resistance (CP-MR) has been widely used to protect transgenic plants against virus diseases. To characterize the mechanisms of CP-MR to tobacco mosaic tobamovirus (TMV) we developed mutants of the coat protein that affected subunit-subunit interactions. Mutant CPs were expressed during TMV replication as well as in transgenic Nicotiana tabacum plants. The mutation T42-->W increased protein aggregation and T28-->W abolished aggregation and assembly, while the mutations T28-->W plus T42-->W and T89-->W altered normal CP subunit-subunit interactions. The mutant T28W was unable to assemble virus-like particles (VLPs) during infection and in transgenic plants failed to aggregate; this protein conferred no protection against challenge of transgenic plants by TMV. The mutant T42W had strong CP subunit-subunit interactions and formed VLPs but not infectious virions. Transgenic lines with this protein exhibited stronger protection against TMV infection than transgenic plants that contained the wild-type (wt) CP. It is proposed that increased resistance conferred by the T42W mutant results from strong interaction between transgenic CP subunits and challenge virus CP subunits. CP carrying the mutation T89-->W formed flexuous and unstable VLPs whereas the double mutant T28W:T42W formed open helical structures that accumulated as paracrystalline arrays. In transgenic plants, T89W and the double mutant CPs showed reduced ability to aggregate and provided lower protection against TMV infection than wt CP. A strong correlation between normal CP subunit-subunit interactions and CP-MR is observed, and a model for CP-MR involving interactions between the transgenic CP and the CP of the challenge virus as well as interference with virus movement is discussed.  相似文献   

5.
The genomes of HCMV clinical strains (e.g. FIX, TR, PH, etc) contain a 15 kb region that encodes 20 putative ORFs. The region, termed ULb’, is lost after serial passage of virus in human foreskin fibroblast (HFF) cell culture. Compared to clinical strains, laboratory strains replicate faster and to higher titers of infectious virus. We made recombinant viruses with 22, 14, or 7 ORFs deleted from the ULb’ region using FIX and TR as model clinical strains. We also introduced a stop codon into single ORFs between UL133 and UL138 to prevent protein expression. All deletions within ULb’ and all stop codon mutants within the UL133 to UL138 region increased to varying degrees, viral major immediate early RNA and protein, DNA, and cell-free infectious virus compared to the wild type viruses. The wild type viral proteins slowed down the viral replication process along with cell-free infectious virus release from human fibroblast cells.  相似文献   

6.
KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.  相似文献   

7.
The benzimidazole D-ribonucleosides TCRB and BDCRB are potent and selective inhibitors of human cytomegalovirus (HCMV) replication. Two HCMV strains resistant to these compounds were selected and had resistance mutations in genes UL89 and UL56. Proteins encoded by these two genes are the two subunits of the HCMV "terminase" and are necessary for cleavage and packaging of viral genomic DNA, a process inhibited by TCRB and BDCRB. We now report that both strains also have a previously unidentified mutation in UL104, the HCMV portal protein. This mutation, which results in L21F substitution, was introduced into the genome of wild-type HCMV by utilizing a recently cloned genome of HCMV as a bacterial artificial chromosome. The virus with this mutation alone was not resistant to BDCRB, suggesting that this site is not involved in binding benzimidazole nucleosides. As in previous proposals for mutations in UL104 of murine cytomegalovirus and HCMV strains resistant to BAY 38-4766, we hypothesize that this mutation could compensate for conformational changes in mutant UL89 and UL56 proteins, since the HCMV terminase is likely to interact with the portal protein during cleavage and packaging of genomic DNA.  相似文献   

8.
Aspartate transcarbamoylase from Escherichia coli shows homotropic cooperativity for aspartate as well as heterotropic regulation by nucleotides. Structurally, it consists of two trimeric catalytic subunits and three dimeric regulatory subunits, each chain being comprised of two domains. Glu-50 and Ser-171 are involved in stabilizing the closed conformation of the catalytic chain. Replacement of Glu-50 or Ser-171 by Ala in the holoenzyme has been shown previously to result in marked decreases in the maximal observed specific activity, homotropic cooperativity, and affinity for aspartate (Dembowski NJ, Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:3716-3723; Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). We have constructed a double mutant enzyme combining both mutations. The resulting Glu-50/ser-171-->Ala enzyme is 9-fold less active than the Ser-171-->Ala enzyme, 69-fold less active than the Glu-50-->Ala enzyme, and shows 1.3-fold and 1.6-fold increases in the [S]0.5Asp as compared to the Ser-171-->Ala and Glu-50-->Ala enzymes, respectively. However, the double mutant enzyme exhibits some enhancement of homotropic cooperativity with respect to aspartate, relative to the single mutant enzymes. At subsaturating concentrations of aspartate, the Glu-50/Ser-171 -->Ala enzyme is activated less by ATP than either the Glu-50-->Ala or Ser-171-->Ala enzyme, whereas CTP inhibition is intermediate between that of the two single mutants. As opposed to the wild-type enzyme, the Glu-50/Ser-171 -->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes by solution X-ray scattering indicates that both mutants exist in the same T quaternary structure as the wild-type enzyme in the absence of ligands, and in the same R quaternary structure in the presence of saturating N-(phosphonoacetyl)-L-aspartate. However, saturating concentrations of carbamoyl phosphate and succinate are unable to convert a significant fraction of either mutant enzyme population to the R quaternary structure, as has been observed previously for the Glu-50-->Ala enzyme. The curves for both the Ser-171-->Ala and Glu-50/Ser-171-->Ala enzymes obtained in the presence of substoichiometric amounts of PALA are linear combinations of the two extreme T and R states. The structural consequences of nucleotide binding to these two enzymes were also investigated. Most surprisingly, the direction and amplitude of the effect of ATP upon the double mutant enzyme were shown to vary depending upon the substrate analogue used.  相似文献   

9.
The catalytic rate of wild type, two single (Lys 120-->Leu, Lys 134-->Thr), and one double (Lys 120-->Leu-Lys 134-->Thr) mutants of Xenopus laevis B Cu,Zn superoxide dismutase has been studied by pulse radiolysis as a function of pH. The pH dependence curve of the wild-type enzyme can be deconvoluted by two deprotonation equilibria, at pH 9.3 (pK1) and at pH 11.3 (pK2). Catalytic rate measurements on single and double mutants indicate that pK1 is mainly due to the deprotonation of Lys 120 and Lys 134, with only a minor contribution from other surface basic residues, whereas pK2 is due to titration of the invariant Arg 141, likely coupled to deprotonation of the copper-bound water molecule. Accordingly, Brownian dynamics simulations carried out as a function of pH reproduce well the pH dependence of the catalytic rate, when the experimentally determined pKs are assigned to Lys 120, Lys 134, and Arg 141.  相似文献   

10.
The structures of the lipooligosaccharides (LOSs) from Haemophilus ducreyi ITM 5535 and ITM 3147 and a fresh clinical isolate, ACY1, have been investigated. Oligosaccharides were obtained from phenol-water-extracted LOS by mild acid hydrolysis and were studied by methylation analysis, fast atom bombardment and electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The major oligosaccharide obtained from all strains was a nonasaccharide with the structure beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-a lpha-D-Hepp- (1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp - (1-->3)]4)-L-alpha-D-Hepp-Kdo (Kdo stands for 3-deoxy-D-manno-octulosonic acid) and is thus identical to that identified as the major oligosaccharide in H. ducreyi ITM 2665 (E. K. H. Schweda, A. C. Sundström, L. M. Eriksson, J.A. Jonasson, and A. A. Lindberg, J. Biol. Chem. 269:12040-12048, 1994). Electrospray ionization mass spectrometry on O-deacylated LOS from H. ducreyi ITM 5535 obtained after treatment with anhydrous hydrazine gave evidence for the presence of a sialylated major compound, Neu5Ac alpha(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Gal p- (1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp -(1-->2)-L- alpha-D-Hepp-(1-->3)]4)-L-alpha-D-Hepp-Kdo(P)-O-deacylated lipid A (Neu5Ac stands for N-acetylneuraminic acid). However, an even larger oligosaccharide could be isolated from all strains as a minor component, viz., the undecasaccharide beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-d-Galp-(1-->4)-beta-D-glcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)]4-L-alpha-D-Hepp-Kdo, which represents an N-acetyl lactosamine disaccharide unit elongation of the LOS outer core. No Sialylation of this latter minor component undecasaccharide was detected.  相似文献   

11.
12.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.  相似文献   

13.
Aspartate transcarbamoylase from Escherichia coli is a dodecameric enzyme consisting of two trimeric catalytic subunits and three dimeric regulatory subunits. Asp-100, from one catalytic chain, is involved in stabilizing the C1-C2 interface by means of its interaction with Arg-65 from an adjacent catalytic chain. Replacement of Asp-100 by Ala has been shown previously to result in increases in the maximal specific activity, homotropic cooperativity, and the affinity for aspartate (Baker DP, Kantrowitz ER, 1993, Biochemistry 32:10150-10158). In order to determine whether these properties were due to promotion of domain closure induced by the weakening of the C1-C2 interface, we constructed a double mutant version of aspartate transcarbamoylase in which the Asp-100-->Ala mutation was introduced into the Glu-50-->Ala holoenzyme, a mutant in which domain closure is impaired. The Glu-50/Asp-100-->Ala enzyme is fourfold more active than the Glu-50-->Ala enzyme, and exhibits significant restoration of homotropic cooperativity with respect to aspartate. In addition, the Asp-100-->Ala mutation restores the ability of the Glu-50-->Ala enzyme to be activated by succinate and increases the affinity of the enzyme for the bisubstrate analogue N-(phosphonacetyl)-L-aspartate (PALA). At subsaturating concentrations of aspartate, the Glu-50/Asp-100-->Ala enzyme is activated more by ATP than the Glu-50-->Ala enzyme and is also inhibited more by CTP than either the wild-type or the Glu-50-->Ala enzyme. As opposed to the wild-type enzyme, the Glu-50/Asp-100-->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Glu-50/Asp-100-->Ala enzyme by solution X-ray scattering indicates that the double mutant exists in the same T quaternary structure as the wild-type enzyme in the absence of ligands and in the same R quaternary structure in the presence of saturating PALA. However, saturating concentrations of carbamoyl phosphate and succinate only convert a fraction of the Glu-50/Asp-100-->Ala enzyme population to the R quaternary structure, a behavior intermediate between that observed for the Glu-50-->Ala and wild-type enzymes. Solution X-ray scattering was also used to investigate the structural consequences of nucleotide binding to the Glu-50/Asp-100-->Ala enzyme.  相似文献   

14.

Background

Human cytomegalovirus (HCMV) can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs) have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5′ mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein.

Methodology/Principal Findings

To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth.

Conclusions/Significance

While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.  相似文献   

15.
This study reports the probable impact of the coupled mutations observed in our clinical isolate of HCMV UL54 polymerase, through structural bioinformatics approaches. The reported variant was found to be resistant to Ganciclovir (GCV) as per the clinical records. The presence of Glutamine deletion at 639 (Glu639) and a mis sense mutation of Serine 655 Leucine (Ser655Leu) in UL54 were identified by DNA sequencing and were predicted to lie in the DNA polymerase type-II domain. Docking simulation studies of the phosphorylated forms of Ganciclovir (GCV), Cidofovir (CDV) and Foscarnet (PFA) with the reported mutants showed significant variation in terms of binding affinity and inhibitory constant (Ki) in comparison to wild type UL54. The findings of this study revealed that the observed coupled mutation could potentially induce allosteric effects in the binding pockets of UL54 and thereby alter the drug binding affinity. In specific, it was observed that this coupled mutation could confer changes in the binding affinity of GCV and PFA by altering the binding energies and inhibitory constants to -0.88Kcal/mol and 226.71mM, -5.81Kcal/mol and 54.83μM, respectively, in comparison to Wild Type. On the other hand, CDV showed increased susceptibility for the reported mutant with a binding energy of -6.16Kcal/mol and inhibitory constant of 30.47μM.  相似文献   

16.
A superfamily of transport proteins, which includes the lactose permease of Escherichia coli, contains a highly conserved motif, G-X-X-X-D/E-R/K-X-G-R/K-R/K, in the loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. Previous analysis of this motif in the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995) has shown that the conserved glycine residue found at the first position in the motif (i.e., Gly-64) is important for transport function. Every substitution at this site, with the exception of alanine, greatly diminished lactose transport activity. In this study, three mutants in which glycine-64 was changed to cysteine, serine, and valine were used as parental strains to isolate 64 independent suppressor mutations that restored transport function. Of these 64 isolates, 39 were first-site revertants to glycine or alanine, while 25 were second-site mutations that restored transport activity yet retained a cysteine, serine, or valine at position 64. The second-site mutations were found to be located at several sites within the lactose permease (Pro-28 --> Ser, Leu, or Thr; Phe-29 --> Ser; Ala-50 --> Thr, Cys-154 --> Gly; Cys-234 --> Phe; Gln-241 --> Leu; Phe-261 --> Val; Thr-266 --> Iso; Val-367 --> Glu; and Ala-369 --> Pro). A kinetic analysis was conducted which compared lactose uptake in the three parental strains and several suppressor strains. The apparent Km values of the Cys-64, Ser-64, and Val-64 parental strains were 0.8 mM, 0.7 mM, and 4.6 mM, respectively, which was similar to the apparent Km of the wild-type permease (1.4 mM). In contrast, the Vmax values of the Cys-64, Ser-64, and Val-64 strains were sharply reduced (3.9, 10.1, and 13.2 nmol of lactose/min x mg of protein, respectively) compared with the wild-type strain (676 nmol of lactose/min x mg of protein). The primary effect of the second-site suppressor mutations was to restore the maximal rate of lactose transport to levels that were similar to the wild-type strains. Taken together, these results support the notion that Gly-64 in the wild-type permease is at a site in the protein which is important in facilitating conformational changes that are necessary for lactose translocation across the membrane. According to our tertiary model, this site is at an interface between the two halves of the protein.  相似文献   

17.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   

18.
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide.  相似文献   

19.
A number of specific point mutations in the human cytomegalovirus (HCMV) DNA polymerase (UL54) gene have been tentatively associated with decreased susceptibility to antiviral agents and consequently with clinical failure. To precisely determine the roles of UL54 mutations in HCMV drug resistance, recombinant UL54 mutant viruses were generated by using cotransfection of nine overlapping HCMV DNA fragments into permissive fibroblasts, and their drug susceptibility profiles were determined. Amino acid substitutions located in UL54 conserved region IV (N408D, F412C, and F412V), region V (A987G), and δ-region C (L501I, K513E, P522S, and L545S) conferred various levels of resistance to cidofovir and ganciclovir. Mutations in region II (T700A and V715M) and region VI (V781I) were associated with resistance to foscarnet and adefovir. The region II mutations also conferred moderate resistance to lobucavir. In contrast to mutations in other UL54 conserved regions, those residing specifically in region III (L802M, K805Q, and T821I) were associated with various drug susceptibility profiles. Mutations located outside the known UL54 conserved regions (S676G and V759M) did not confer any significant changes in HCMV drug susceptibility. Predominantly an additive effect of multiple UL54 mutations with respect to the final drug resistance phenotype was demonstrated. Finally, the influence of selected UL54 mutations on the susceptibility of viral DNA replication to antiviral drugs was characterized by using a transient-transfection-plus-infection assay. Results of this work exemplify specific roles of the UL54 conserved regions in the development of HCMV drug resistance and may help guide optimization of HCMV therapy.  相似文献   

20.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号