首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic activity of coagulation factor VIIa (FVIIa) is dependent on Ca(2+) binding to a loop (residues 210-220) in the protease domain. Structural analysis revealed that Ca(2+) may enhance the activity by attenuating electrostatic repulsion of Glu(296) and/or by facilitating interactions between the loop and Lys(161) in the N-terminal tail. In support of the first mechanism, the mutations E296V and D212N resulted in similar, about 2-fold, enhancements of the amidolytic activity. Moreover, mutation of the Lys(161)-interactive residue Asp(217) or Asp(219) to Ala reduced the amidolytic activity by 40-50%, whereas the K161A mutation resulted in 80% reduction. Hence one of these Asp residues in the Ca(2+)-binding loop appears to suffice for some residual interaction with Lys(161), whereas the more severe effect upon replacement of Lys(161) is due to abrogation of the interaction with the N-terminal tail. However, Ca(2+) attenuation of the repulsion between Asp(212) and Glu(296) keeps the activity above that of apoFVIIa. Altogether, our data suggest that repulsion involving Asp(212) in the Ca(2+)-binding loop suppresses FVIIa activity and that optimal activity requires a favorable interaction between the Ca(2+)-binding loop and the N-terminal tail. Crystal structures of tissue factor-bound FVIIa(D212N) and FVIIa(V158D/E296V/M298Q) revealed altered hydrogen bond networks, resembling those in factor Xa and thrombin, after introduction of the D212N and E296V mutations plausibly responsible for tethering the N-terminal tail to the activation domain. The charge repulsion between the Ca(2+)-binding loop and the activation domain appeared to be either relieved by charge removal and new hydrogen bonds (D212N) or abolished (E296V). We propose that Ca(2+) stimulates the intrinsic FVIIa activity by a combination of charge neutralization and loop stabilization.  相似文献   

2.
Malmberg NJ  Varma S  Jakobsson E  Falke JJ 《Biochemistry》2004,43(51):16320-16328
During Ca(2+) activation, the Ca(2+)-binding sites of C2 domains typically bind multiple Ca(2+) ions in close proximity. These binding events exhibit positive cooperativity, despite the strong charge repulsion between the adjacent divalent cations. Using both experimental and computational approaches, the present study probes the detailed mechanisms of Ca(2+) activation and positive cooperativity for the C2 domain of cytosolic phospholipase A(2), which binds two Ca(2+) ions in sites I and II, separated by only 4.1 A. First, each of the five coordinating side chains in the Ca(2+)-binding cleft is individually mutated and the effect on Ca(2+)-binding affinity and cooperativity is measured. The results identify Asp 43 as the major contributor to Ca(2+) affinity, while the two coordinating side chains that provide bridging coordination to both Ca(2+) ions, Asp 43 and Asp 40, are observed to make the largest contributions to positive cooperativity. Electrostatic calculations reveal that Asp 43 possesses the highest pseudo-pK(a) of the coordinating acidic residues, as well as the highest general cation affinity, due to its relatively buried location within 3.5 A of seven protein oxygens with full or partial negative charges. These calculations therefore explain the greater importance of Asp 43 in defining the Ca(2+) affinity. Overall, the experimental and computational results support an activation model in which the first Ca(2+) ion binds usually to site I, thereby preordering both bridging side chains Asp 40 and 43, and partially or fully deprotonating the three coordinating Asp residues. This initial binding event prepares the conformation and protonation state of the remaining site for Ca(2+) binding, enabling the second Ca(2+) ion to bind with higher affinity than the first as required for positive cooperativity.  相似文献   

3.
Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.  相似文献   

4.
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2) domains of fly synaptotagmin 4 exhibit Ca(2+)-dependent phospholipid binding, whereas neither C(2) domain of rat synaptotagmin 4 binds Ca(2+) or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca(2+) ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C(2)B domain unable to form full Ca(2+)-binding sites. These results indicate that synaptotagmin 4 is a Ca(2+) sensor in the fly but not in the rat, that the Ca(2+)-binding properties of C(2) domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.  相似文献   

5.
A series of cyclic peptides with different linkers were designed and synthesized to model the elbow-type Ca2+-binding loop of alpha-lactalbumin (LA). All amino acids of the Ca2+-binding loop are strikingly well conserved among LAs of different species with the sequence Lys79-Phe-Leu-Asp82-Asp-Asp-Leu-Thr- Asp87-Asp88, where three carboxylates of Asp82, Asp87, and Asp88 and the amide carbonyl oxygen atoms of Lys79 and Asp84 participate in Ca2+ binding. Alanine-containing models were also prepared for monitoring the role of the binding (82, 87-88) and nonbinding Asp residues (83-84) in coordinating the cation. The structural features of synthetic peptides and their Ca2+-binding properties were investigated in solution by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. In water, the CD curves show a strong negative band below 200 nm as a sign of the presence of unfolded conformers. In TFE, all cyclic peptides were found to have a CD spectrum, reflecting the presence of folded (turn) conformers. The effect of Ca2+ was dependent on the structure and concentration of the model and the Ca2+ to peptide ratio (r(cat)). A surprising time dependence of the FTIR spectra of Ca2+ complexes of the Ala-containing peptides was observed. The shape of the broad amide I band showed no more change after approximately 60 min. Contrary to this, the deprotonation of the side chain COOH group(s) and formation of the final coordination sphere of Ca2+ took more time. Infrared spectra showed that in the Ca2+ complex of model comprising the binding Asp residues of LA, the cation is coordinated to the COO- groups of all three Asps, while in the complex of model comprising nonbinding Asp residues of LA, the two neighboring Asp side chains form a bridged Ca2+-binding system.  相似文献   

6.
Li Z  Lin Q  Yang DS  Ewart KV  Hew CL 《Biochemistry》2004,43(46):14547-14554
The type II antifreeze protein of Atlantic herring (Clupea harengus harengus) requires Ca(2+) as a cofactor to inhibit the growth of ice crystals. On the basis of homology modeling with Ca(2+)-dependent lectin domains, five residues of herring antifreeze protein (hAFP) are predicted to be involved in Ca(2+) binding: Q92, D94, E99, N113, and D114. The role of E99, however, is less certain. A previous study on a double mutant EPN of hAFP suggested that the Ca(2+)-binding site of hAFP was the ice-binding site. However, it is possible that Ca(2+) might function distantly to affect ice binding. Site-directed mutagenesis was performed on the Ca(2+)-coordinating residues of hAFP in order to define the location of the ice-binding site and to explore the role of these residues in antifreeze activity. Properties of the mutants were investigated in terms of their structural integrity and antifreeze activity. Equilibrium dialysis analysis demonstrated that E99 is a Ca(2+)-coordinating residue. Moreover, proteolysis protection assay revealed that removal of Ca(2+) affected the conformation of the Ca(2+)-binding loop rather than the core structure of hAFP. This finding rules out the possibility that Ca(2+) might act at a distance via a conformational change to affect the function of hAFP. Substitutions at positions 99 and 114 resulted in severely reduced thermal hysteresis activity. These data indicate that the ice-binding site of hAFP is located at the Ca(2+)-binding site and the loop region defined by residues 99 and 114 is important for antifreeze activity.  相似文献   

7.
The epithelial Ca(2+) channel (ECaC), which was recently cloned from rabbit kidney, exhibits distinctive properties that support a facilitating role in transcellular Ca(2+) (re)absorption. ECaC is structurally related to the family of six transmembrane-spanning ion channels with a pore-forming region between S5 and S6. Using point mutants of the conserved negatively charged amino acids present in the putative pore, we have identified a single aspartate residue that determines Ca(2+) permeation of ECaC and modulation by extracellular Mg(2+). Mutation of the aspartate residue, D542A, abolishes Ca(2+) permeation and Ca(2+)-dependent current decay as well as block by extracellular Mg(2+), whereas monovalent cations still permeate the mutant channel. Variation of the side chain length in mutations D542N, D542E, and D542M attenuated Ca(2+) permeability and Ca(2+)-dependent current decay. Block of monovalent currents through ECaC by Mg(2+) was decreased. Exchanging the aspartate residue for a positively charged amino acid, D542K, resulted in a nonfunctional channel. Mutations of two neighboring negatively charged residues, i.e. Glu(535) and Asp(550), had only minor effects on Ca(2+) permeation properties.  相似文献   

8.
We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.  相似文献   

9.
The use of competitive isothermal titration calorimetry (ITC) to measure high-affinity binding constants has been largely restricted to systems with a single binding site or multiple identical sites. This study demonstrates the extension of this approach to proteins with two nonequivalent EF-hand Ca(2+)-binding sites--rat beta parvalbumin and the S55D/E59D variant of rat alpha parvalbumin. The method involves simultaneous (global) least-squares analysis of titrations with Ca(2+), with Mg(2+), with Ca(2+) in the presence of Mg(2+), and with Ca(2+) or Mg(2+) in the presence of a competitive chelator (EDTA or EGTA). The Ca(2+) and Mg(2+) binding constants obtained for rat beta agree well with estimates obtained by flow dialysis. Although the Ca(2+) affinity of alpha S55D/E59D is too high to measure by flow dialysis, it was amenable to analysis using the ITC-based approach. The combined S55D and E59D mutations increase the Ca(2+) and Mg(2+) affinities of the mutated binding site by factors of 14 and 26, respectively. This behavior is consistent with that seen previously for the rat beta S55D variant.  相似文献   

10.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) extrudes Ca(2+) from cells utilizing both the inward Na(+) gradient and the outward K(+) gradient. NCKX is thought to operate by a consecutive mechanism in which a cation binding pocket accommodates both Ca(2+) and K(+) and alternates between inward and outward facing conformations. Here we developed a simple fluorometric method to analyze changes in K(+) and Ca(2+) dependences of mutant NCKX2 proteins in which candidate residues within membrane-spanning domains were substituted. The largest shifts in both K(+) and Ca(2+) dependences compared with wild-type NCKX2 were observed for the charge-conservative substitutions of Glu(188) and Asp(548), whereas the size-conservative substitutions resulted in nonfunctional proteins. Substitution of several other residues including two proline residues (Pro(187) and Pro(547)), three additional acidic residues (Asp(258), Glu(265), Glu(533)), and two hydroxyl-containing residues (Ser(185) and Ser(545)) showed smaller shifts, but shifts in Ca(2+) dependence were invariably accompanied by shifts in K(+) dependence. We conclude that Glu(188) and Asp(548) are the central residues of a single cation binding pocket that can accommodate both K(+) and Ca(2+). Furthermore, a single set of residues lines a transport pathway for both K(+) and Ca(2+).  相似文献   

11.
Troponin C (TnC) is the Ca(2+)-binding regulatory protein of the troponin complex in muscle tissue. Vertebrate fast skeletal muscle TnCs bind four Ca(2+), while Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle TnC binds only one Ca(2+) at site IV, because all the other EF-hand motifs are short of critical residues for the coordination of Ca(2+). Fourier transform infrared (FTIR) spectroscopy was applied to study coordination structure of Mg(2+) bound in a mutant Akazara scallop TnC (E142Q) in D(2)O solution. The result showed that the side-chain COO(-) groups of Asp 131 and Asp 133 in the Ca(2+)-binding site of E142Q bind to Mg(2+) in the pseudo-bridging mode. Mg(2+) titration experiments for E142Q and the wild-type of Akazara scallop TnC were performed by monitoring the band at about 1600 cm(-1), which is due to the pseudo-bridging Asp COO(-) groups. As a result, the binding constants of them for Mg(2+) were the same value (about 6 mM). Therefore, it was concluded that the side-chain COO(-) group of Glu 142 of the wild type has no relation to the Mg(2+) ligation. The effect of Mg(2+) binding in E142Q was also investigated by CD and fluorescence spectroscopy. The on-off mechanism of the activation of Akazara scallop TnC is discussed on the basis of the coordination structures of Mg(2+) as well as Ca(2+).  相似文献   

12.
Zhou Y  Tzeng WP  Yang W  Zhou Y  Ye Y  Lee HW  Frey TK  Yang J 《Journal of virology》2007,81(14):7517-7528
The rubella virus (RUB) nonstructural protein (NS) open reading frame (ORF) encodes a polypeptide precursor that is proteolytically self cleaved into two replicase components involved in viral RNA replication. A putative EF-hand Ca(2+)-binding motif that was conserved across different genotypes of RUB was predicted within the nonstructural protease that cleaves the precursor by using bioinformatics tools. To probe the metal-binding properties of this motif, we used an established grafting approach and engineered the 12-residue Ca(2+)-coordinating loop into a non-Ca(2+)-binding scaffold protein, CD2. The grafted EF-loop bound to Ca(2+) and its trivalent analogs Tb(3+) and La(3+) with K(d)s of 214, 47, and 14 microM, respectively. Mutations (D1210A and D1217A) of two of the potential Ca(2+)-coordinating ligands in the EF-loop led to the elimination of Tb(3+) binding. Inductive coupled plasma mass spectrometry was used to confirm the presence of Ca(2+) ([Ca(2+)]/[protein] = 0.7 +/- 0.2) in an NS protease minimal metal-binding domain, RUBCa, that spans the EF-hand motif. Conformational studies on RUBCa revealed that Ca(2+) binding induced local conformational changes and increased thermal stability (Delta T(m) = 4.1 degrees C). The infectivity of an RUB infectious cDNA clone containing the mutations D1210A/D1217A was decreased by approximately 20-fold in comparison to the wild-type (wt) clone, and these mutations rapidly reverted to the wt sequence. The NS protease containing these mutations was less efficient at precursor cleavage than the wt NS protease at 35 degrees C, and the mutant NS protease was temperature sensitive at 39 degrees C, confirming that the Ca(2+)-binding loop played a structural role in the NS protease and was specifically required for optimal stability under physiological conditions.  相似文献   

13.
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.  相似文献   

14.
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.  相似文献   

15.
15N relaxation data for Ca(2+)-bound rat beta-parvalbumin (a.k.a. oncomodulin) were analyzed using the Lipari-Szabo formalism and compared with existing data for rat alpha-parvalbumin. Although the average S(2) values for the two proteins are very similar (0.85 for alpha, 0.84 for beta), residue-by-residue inspection reveals systematic differences. alpha tends to have the lower S(2) value in helical regions; beta tends to have the lower value in the loop regions. Rat beta was also examined in the Ca(2+)-free state. The 59 assigned residues displayed an average order parameter (0.90) significantly greater than the corresponding residues in the Ca(2+)-loaded form. The pentacarboxylate variants of rat beta-S55D and G98D-also were examined in the Ca(2+)-bound state. Although both mutations significantly heighten Ca(2+) affinity, they utilize distinct energetic strategies. S55D improves the Ca(2+)-binding enthalpy; G98D improves the binding entropy. They also show disparate peptide backbone dynamics. Whereas beta G98D displays an average order parameter (0.87) slightly greater than that of the wild-type protein, beta S55D displays an average order parameter (0.82) slightly lower than wild-type beta. Furthermore, whereas just two backbone N-H bonds in beta G98D show internal motion on the 20-200-psec timescale, fully 52 of the 93 residues analyzed in beta S55D show this behavior. These findings suggest that the increased electrostatic repulsion attendant to introduction of an additional carboxylate into the CD site ligand array impedes backbone vibrational motion throughout the molecule.  相似文献   

16.
17.
Calbindin D28k exhibits properties characteristic of a Ca2+ sensor   总被引:3,自引:0,他引:3  
Calbindin D(28k) is a member of the calmodulin superfamily of Ca(2+)-binding proteins and contains six EF-hands. The protein is generally believed to function as a Ca(2+) buffer, but the studies presented in this work indicate that it may also act as a Ca(2+) sensor. The results show that Mg(2+) binds to the same sites as Ca(2+) with an association constant of approximately 1.4.10(3) m(-1) in 0.15 m KCl. The four high affinity sites in calbindin D(28k) bind Ca(2+) in a non-sequential, parallel manner. In the presence of physiological concentrations of Mg(2+), the Ca(2+) affinity is reduced by a factor of 2, and the cooperativity, which otherwise is modest, increases. Based on the binding constants determined in the presence of physiological salt concentrations, we estimate that at the Ca(2+) concentration in a resting cell calbindin D(28k) is saturated to 40-75% with Mg(2+) but to less than 9% with Ca(2+). In contrast, the protein is expected to be nearly fully saturated with Ca(2+) at the Ca(2+) level of an activated cell. A substantial conformational change is observed upon Ca(2+) binding, but only minor structural changes take place upon Mg(2+) binding. This suggests that calbindin D(28k) undergoes Ca(2+)-induced structural changes upon Ca(2+) activation of a cell. Thus, calbindin D(28k) displays several properties that would be expected for a protein involved in Ca(2+)-induced signal transmission and hence may function not only as a Ca(2+) buffer but also as a Ca(2+) sensor. Digestion patterns resulting from limited proteolysis of the protein suggest that the loop of EF-hand 2, a variant site that does not bind Ca(2+), becomes exposed upon Ca(2+) binding.  相似文献   

18.
Hauser K  Barth A 《Biophysical journal》2007,93(9):3259-3270
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.  相似文献   

19.
A family of Ca(2+)-binding proteins (CaBPs) was shown to bind to the inositol 1,4,5-trisphosphate receptor (InsP(3)R) Ca(2+) release channel and gate it in the absence of InsP(3), establishing them as protein ligands (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). However, the neuronally restricted expression of CaBP and its inhibition of InsP(3)R-mediated Ca(2+) signaling when overexpressed (Kasri, N. N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J., Holmes, A. B., Berridge, M. J., and Roderick, H. L. (2004) EMBO J. 23, 312-321; Haynes, L. P., Tepikin, A. V., and Burgoyne, R. D. (2004) J. Biol. Chem. 279, 547-555) have raised questions regarding the functional implications of this regulation. We have discovered the Ca(2+)-binding protein CIB1 (calmyrin) as a ubiquitously expressed ligand of the InsP(3)R. CIB1 binds to all mammalian InsP(3)R isoforms in a Ca(2+)-sensitive manner dependent on its two functional EF-hands and activates InsP(3)R channel gating in the absence of InsP(3). In contrast, overexpression of CIB1 or CaBP1 attenuated InsP(3)R-dependent Ca(2+) signaling, and in vitro pre-exposure to CIB1 reduced the number of channels available for subsequent stimulation by InsP(3). These results establish CIB1 as a ubiquitously expressed activating and inhibiting protein ligand of the InsP(3)R.  相似文献   

20.
Of the isoforms of plant phospholipase D (PLD) that have been cloned and characterized, PLDalpha requires millimolar levels of Ca(2+) for optimal activity, whereas PLDbeta is most active at micromolar concentrations of Ca(2+). Multiple amino acid sequence alignments suggest that PLDalpha and PLDbeta both contain a Ca(2+)-dependent phospholipid-binding C2 domain near their N termini. In the present study, we expressed and characterized the putative C2 domains of PLDalpha and PLDbeta, designated PLDalpha C2 and PLDbeta C2, by CD spectroscopy, isothermal titration calorimetry, and phospholipid binding assay. Both PLD C2 domains displayed CD spectra consistent with anticipated major beta-sheet structures but underwent spectral changes upon binding Ca(2+); the magnitude was larger for PLDbeta C2. These conformational changes, not shown by any of the previously characterized C2 domains of animal origin, occurred at micromolar Ca(2+) concentrations for PLDbeta C2 but at millimolar levels of the cation for PLDalpha C2. PLDbeta C2 exhibited three Ca(2+)-binding sites: one with a dissociation constant (K(d)) of 0.8 microm and the other two with a K(d) of 24 micrometer. In contrast, isothermal titration calorimetry data of PLDalpha C2 were consistent with 1-3 low affinity Ca(2+)-binding sites with K(d) in the range of 590-470 micrometer. The thermodynamics of Ca(2+) binding markedly differed for the two C2 domains. Likewise, PLDbeta C2 bound phosphatidylcholine (PC), the substrate of PLD, in the presence of submillimolar Ca(2+) concentrations, whereas PLDalpha C2 did so only in the presence of millimolar levels of the metal ion. Both C2 domains bound phosphatidylinoistol 4,5-bisphosphate, a regulator of PC hydrolysis by PLD. However, added Ca(2+) displaced the bound phosphatidylinoistol 4,5-bisphosphate. Ca(2+) and PC binding properties of PLDalpha C2 and PLDbeta C2 follow a trend similar to the Ca(2+) requirements of the whole enzymes, PLDalpha and PLDbeta, for PC hydrolysis. Taken together, the results suggest that the C2 domains of PLDalpha and PLDbeta have novel structural features and serve as handles by which Ca(2+) differentially regulates the activities of the isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号