首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased expression of Notch signaling pathway components is observed in Kaposi sarcoma (KS) but the mechanism underlying the manipulation of the canonical Notch pathway by the causative agent of KS, Kaposi sarcoma herpesvirus (KSHV), has not been fully elucidated. Here, we describe the mechanism through which KSHV directly modulates the expression of the Notch ligands JAG1 and DLL4 in lymphatic endothelial cells. Expression of KSHV-encoded vFLIP induces JAG1 through an NFκB-dependent mechanism, while vGPCR upregulates DLL4 through a mechanism dependent on ERK. Both vFLIP and vGPCR instigate functional Notch signalling through NOTCH4. Gene expression profiling showed that JAG1- or DLL4-stimulated signaling results in the suppression of genes associated with the cell cycle in adjacent lymphatic endothelial cells, indicating a role for Notch signaling in inducing cellular quiescence in these cells. Upregulation of JAG1 and DLL4 by KSHV could therefore alter the expression of cell cycle components in neighbouring uninfected cells during latent and lytic phases of viral infection, influencing cellular quiescence and plasticity. In addition, differences in signaling potency between these ligands suggest a possible complementary role for JAG1 and DLL4 in the context of KS.  相似文献   

2.
3.
4.
RUNX3 takes a strong suppressive effect in many tumors including hepatocellular carcinoma (HCC). HES-1, a downstream target of Notch signaling, is shown to be decreased in human HCC cell line SMMC7721 with RUNX3 gene transfection. Since Notch signaling is oncogenic in HCC, RUNX3 might exert its inhibitory effect in HCC partly through the suppression on Notch signaling. To investigate the possible mechanism of the down-regulation of HES-1 by RUNX3, we performed Western blot and reporter assay and found that RUNX3 suppressed intracellular domain of Notch1 (ICN1)-mediated transactivation of Notch signaling while it did not alter the expression of ICN1 and recombination signal binding protein-Jκ (RBP-J) in SMMC7721 cells. Besides, confocal microscopy, co-immunoprecipitation and GST pull-down assays showed that RUNX3 could co-localize with ICN1 and RBP-J, forming a complex with these two molecules in nucleus of SMMC7721 cells by its direct interaction with ICN1. Furthermore, RUNX3 was recruited to RBP-J recognition motif of HES-1 promoter, which was identified by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Taken together, these findings indicate that RUNX3 suppresses Notch signaling in HCC SMMC7721 cells by its interaction with ICN1 and thus recruitment to the RBP-J recognition motif of downstream genes of Notch signaling.  相似文献   

5.
6.
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.  相似文献   

7.
8.
Multipotent human dental follicle cells (HDFCs) have been intensively studied in periodontal regeneration research, yet the role of Notch1 in HDFCs has not been fully understood. The aim of the current study is to explore the role of Notch1 signaling in HDFCs self-renewal and proliferation. HDFCs were obtained from the extracted wisdom teeth from adolescent patients. Regulation of Notch1 signaling in the HDFCs was achieved by overexpressing the exogenous intracellular domain of Notch1 (ICN1) or silencing Notch1 by shRNA. The regulatory effects of Notch1 on HDFC proliferation, cell cycle distribution and the expression of cell cycle regulators were investigated through various molecular technologies, including plasmid construction, retrovirus preparation and infection, qRT-PCR, western blot, RBP-Jk luciferase reporter and cell proliferation assay. Our data clearly show that constitutively activation of Notch1 stimulates the HDFCs proliferation while inhibition of the Notch1 suppresses their proliferation in vitro. In addition, the HDFCs proliferation is associated with the increased expression of cell cycle regulators, e.g. cyclin D1, cyclin D2, cyclin D3, cyclin E1, CDK2, CDK4, CDK6, and SKP2 and the decreased expression of p27 kip1. Moreover, our data show that the G1/S phase transition (indicating proliferation) and telomerase activity (indicating self-renewal) can be enhanced by overexpression of ICN1 but halted by inhibition of Notch1. Together, the current study provides evidence for the first time that Notch1 signaling regulates the proliferation and self-renewal capacity of HDFCs through modulation of the G1/S phase transition and the telomerase activity.  相似文献   

9.
The Notch signaling pathway is a critical embryonic developmental regulatory pathway that has been implicated in oncogenesis. In non-small cell lung cancer (NSCLC), recent evidence suggests that Notch signaling may contribute to maintenance of a cancer stem or progenitor cell compartment required for tumorigenesis. We explored whether intact Notch signaling is required for NSCLC clonogenic and tumorigenic potential in vitro and in vivo using a series of genetically modified model systems. In keeping with previous observations, we find that Notch3 in particular is upregulated in human lung cancer lines and that downregulation of Notch signaling using a selective γ-secretase inhibitor (MRK-003) is associated with decreased proliferation and clonogenic capacity in vitro. We show that this phenotype is rescued with the expression of NICD3, a constitutively active cleaved form of Notch3 not affected by γ-secretase inhibition. Using an inducible LSL-KRAS(G12D) model of lung cancer in vivo, we show a transient upregulation of Notch pathway activity in early tumor precursor lesions. However, a more rigorous test of the requirement for Notch signaling in lung oncogenesis, crossing the LSL-KRAS(G12D) mouse model with a transgenic with a similarly inducible global dominant-negative suppressor of Notch activity, LSL-DNMAML (dominant-negative mastermind-like), reveals no evidence of Notch pathway requirement for lung tumor initiation or growth in vivo. Distinct Notch family members may have different and potentially opposing activities in oncogenesis, and targeted inhibition of individual Notch family members may be a more effective anticancer strategy than global pathway suppression.  相似文献   

10.
Notch信号通路是一个在进化中高度保守的信号通道,具有调控细胞增殖、分化及凋亡的作用。近年来,随着研究的不断深入,发现Notch信号通路与生殖干细胞的增殖分化及干细胞微环境的作用机理密切关联,Notch信号通路在生殖系统发育及疾病治疗中的作用机制逐渐引起人们的广泛关注。该文综合论述了Notch信号通路的生理特性及功能,重点阐述Notch信号通路在精原干细胞、卵巢生殖干细胞及生殖干细胞微环境系统中的调控机制。  相似文献   

11.
12.
13.
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1WT) or mutant Notch1 vectors (Notch1V1754L) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γ-secretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)–phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, membrane-tethered Notch1 was strongly associated with activated EGFR–PI3K–AKT signaling pathway.  相似文献   

14.
Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis.  相似文献   

15.
杨曦  陈鹏  蒋霞  潘敏慧  鲁成 《昆虫学报》2021,64(2):250-258
Notch 信号通路由 Notch 受体、Notch 配体(DSL 蛋白)、CSL[C promoter binding factor-1(CBF1),Suppressor of hairless(Su(H)),Lag-1]转录因子、其他效应子和Notch调节分子构成,在动物组织的发育和器官的细胞命运决定中起着基础性的...  相似文献   

16.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号