首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sumper  M. 《Journal of phycology》2000,36(S3):64-65
Diatoms are well known for the intricate patterns of their silica-based cell walls. The complex structures of diatom cell walls are species specific and become precisely reproduced during each cell division cycle, indicating a genetic control of silica biomineralization. Therefore, the formation of the diatom cell wall has been regarded as a paradigm for controlled production of nanostructured silica. However, the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. Recently, we have shown that a set of highly cationic peptides (called silaffins) isolated from Cylindrotheca fusiformis shells are able to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Different silaffin species produce different morphologies of the precipitated silica. Silaffins contain covalently modified Lys-Lys elements. One of these lysine residues bears a novel type of protein modification, a polyamine consisting of 6–11 repeats of the N-methyl-propylamine unit. In addition to the silaffins, additional polyamine-containing substances have been isolated from a number of diatom species that may be involved in the control of biosilica morphology. Scanning electron microscopic analysis of diatom shells isolated in statu nascendi provide insights into the processes of pattern formation in biosilica. A model will be discussed that explains production of nanostructured biosilica in diatoms on the basis of these experimental results.  相似文献   

2.
Sumper M  Brunner E  Lehmann G 《FEBS letters》2005,579(17):3765-3769
Pattern formation during silica biomineralization in diatoms appears to depend on long-chain polyamines as well as proteins covalently modified with polyamines (silaffins). Recently, the complete genome of the diatom Thalassiosira pseudonana has been sequenced making this species an attractive model organism for future studies on biomineralization. Mass- and NMR-spectroscopic analysis of the long-chain polyamines from this diatom species reveals the existence of a complex population with as yet unknown structural features. These include complex methylation patterns, different attachment moieties as well as the existence of quaternary ammonium functionalities.  相似文献   

3.
Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification for localization of recombinant proteins in the biosilica cell wall. However, the full range of protein functionalities that can be accommodated by the modified porous biosilica has yet to be described. Our objective was to functionalize diatom biosilica with a reagent-less sensor dependent on ligand-binding and conformational change to drive FRET-based signaling capabilities. A fusion protein designed to confer such properties included a bacterial periplasmic ribose binding protein (R) flanked by CyPet (C) and YPet (Y), cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the CRY recombinant chimeric protein was confirmed by expression in E. coli prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of the recombinant CRY showed 97% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica localization exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 μM and 142.8 μM, respectively. The addition of the Sil3 tag did not alter the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated frustules in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand-binding and conformational change for FRET-signal generation.  相似文献   

4.
The biological formation of inorganic materials (biomineralization) often occurs in specialized intracellular vesicles. Prominent examples are diatoms, a group of single-celled eukaryotic microalgae that produce their SiO2 (silica)-based cell walls within intracellular silica deposition vesicles (SDVs). SDVs contain protein-based organic matrices that control silica formation, resulting in species specifically nanopatterned biosilica, an organic-inorganic composite material. So far no information is available regarding the molecular mechanisms of SDV biogenesis. Here we have investigated by fluorescence microscopy and subcellular membrane fractionation the intracellular transport of silaffin Sil3. Silaffins are a group of phosphoproteins constituting the main components of the organic matrix of diatom biosilica. We demonstrate that the N-terminal signal peptide of Sil3 mediates import into a specific subregion of the endoplasmic reticulum. Additional segments from the mature part of Sil3 are required to reach post-endoplasmic reticulum compartments. Further transport of Sil3 and incorporation into the biosilica (silica targeting) require protein segments that contain a high density of modified lysine residues and phosphoserines. Silica targeting of Sil3 is not dependent on a particular peptide sequence, yet a lysine-rich 12–14-amino acid peptide motif (pentalysine cluster), which is conserved in all silaffins, strongly promotes silica targeting. The results of the present work provide the first insight into the molecular mechanisms for biogenesis of mineral-forming vesicles from an eukaryotic organism.  相似文献   

5.
Diatoms are unicellular eucaryotic algae with cell walls containing silica, intricately and ornately structured on the nanometer scale. Overall silica structure is formed by expansion and molding of the membrane-bound silica deposition vesicle. Although molecular details of silica polymerization are being clarified, we have limited insight into molecular components of the silica deposition vesicle, particularly of membrane-associated proteins that may be involved in structure formation. To identify such proteins, we refined existing procedures to isolate an enriched cell wall fraction from the diatom Thalassiosira pseudonana, the first diatom with a sequenced genome. We applied tandem mass spectrometric analysis to this fraction, identifying 31 proteins for further evaluation. mRNA levels for genes encoding these proteins were monitored during synchronized progression through the cell cycle and compared with two previously identified silaffin genes (involved in silica polymerization) having distinct mRNA patterns that served as markers for cell wall formation. Of the 31 proteins identified, 10 had mRNA patterns that correlated with the silaffins, 13 had patterns that did not, and seven had patterns that correlated but also showed additional features. The possible involvements of these proteins in cell wall synthesis are discussed. In particular, glutamate acetyltransferase was identified, prompting an analysis of mRNA patterns for other genes in the polyamine biosynthesis pathway and identification of those induced during cell wall synthesis. Application of a specific enzymatic inhibitor for ornithine decarboxylase resulted in dramatic alteration of silica structure, confirming the involvement of polyamines and demonstrating that manipulation of proteins involved in cell wall synthesis can alter structure. To our knowledge, this is the first proteomic analysis of a diatom, and furthermore we identified new candidate genes involved in structure formation and directly demonstrated the involvement of one enzyme (and its gene) in the structure formation process.  相似文献   

6.
Many pigmented heterokonts are able to synthesize elements of their cell walls (the frustules) of dense biogenic silica. These include diatom algae, which occupy a significant place in the biosphere. The siliceous frustules of diatoms have species-specific patterns of surface structures between 10 and a few hundred nanometers. The present review considers possible mechanisms of uptake of silicic acid from the aquatic environment, its transport across the plasmalemma, and intracellular transport and deposition of silica inside the specialized Silica Deposition Vesicle (SDV) where elements of the new frustule are formed. It is proposed that a complex of silicic acid with positively charged proteins silaffins and polypropylamines remains a homogeneous solution during the intracellular transport to SDV, where biogenic silica precipitates. The high density of the deposited biogenic silica may be due to removal of water from the SDV by aquaporins followed by syneresis--a process during which pore water is expelled from the network of the contracting gel. The pattern of aquaporins in the silicalemma, the membrane embracing the SDV, can determine the pattern of species-specific siliceous nanostructures.  相似文献   

7.
The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis.  相似文献   

8.
The formation of SiO2-based cell walls by diatoms (a large group of unicellular microalgae) is a well established model system for the study of molecular mechanisms of biological mineral morphogenesis (biomineralization). Diatom biomineralization involves highly phosphorylated proteins (silaffins and silacidins), analogous to other biomineralization systems, which also depend on diverse sets of phosphoproteins (e.g. mammalian teeth and bone, mollusk shells, and sponge silica). The phosphate moieties on biomineralization proteins play an essential role in mineral formation, yet the kinases catalyzing the phosphorylation of these proteins have remained poorly characterized. Recent functional genomics studies on the diatom Thalassiosira pseudonana have revealed >100 proteins potentially involved in diatom silica formation. Here we have characterized the biochemical properties and biological function of one of these proteins, tpSTK1. Multiple tpSTK1-like proteins are encoded in diatom genomes, all of which exhibit low but significant sequence similarity to kinases from other organisms. We show that tpSTK1 has serine/threonine kinase activity capable of phosphorylating silaffins but not silacidins. Cell biological and biochemical analysis demonstrated that tpSTK1 is an abundant component of the lumen of the endoplasmic reticulum. The present study provides the first molecular structure of a kinase that appears to catalyze phosphorylation of biomineral forming proteins in vivo.  相似文献   

9.
Tesson B  Hildebrand M 《PloS one》2010,5(12):e14300
BACKGROUND: The diatom cell wall, called the frustule, is predominantly made out of silica, in many cases with highly ordered nano- and micro-scale features. Frustules are built intracellularly inside a special compartment, the silica deposition vesicle, or SDV. Molecules such as proteins (silaffins and silacidins) and long chain polyamines have been isolated from the silica and shown to be involved in the control of the silica polymerization. However, we are still unable to explain or reproduce in vitro the complexity of structures formed by diatoms. METHODS/PRINCIPAL FINDING: In this study, using fluorescence microscopy, scanning electron microscopy, and atomic force microscopy, we were able to compare and correlate microtubules and microfilaments with silica structure formed in diversely structured diatom species. The high degree of correlation between silica structure and actin indicates that actin is a major element in the control of the silica morphogenesis at the meso and microscale. Microtubules appear to be involved in the spatial positioning on the mesoscale and strengthening of the SDV. CONCLUSIONS/SIGNIFICANCE: These results reveal the importance of top down control over positioning of and within the SDV during diatom wall formation and open a new perspective for the study of the mechanism of frustule patterning as well as for the understanding of the control of membrane dynamics by the cytoskeleton.  相似文献   

10.
Frustules, the silica shells of diatoms, have unique porous architectures with good mechanical strength. In recent years, biologists have learned more about the mechanism of biosilica shells formation; meanwhile, physicists have revealed their optical and microfluidic properties, and chemists have identified ways to modify them into various materials while maintaining their hierarchical structures. These efforts have provided more opportunities to use biosilica structures in microsystems and other commercial products. This review focuses on the preparation of biosilica structures and their applications, especially in the development of microdevices. We discuss existing methods of extracting biosilica from diatomite and diatoms, introduce methods of separating biosilica structures by shape and sizes, and summarize recent studies on diatom-based devices used for biosensing, drug delivery, and energy applications. In addition, we introduce some new findings on diatoms, such as the elastic deformable characteristics of biosilica structures, and offer perspectives on planting diatom biosilica in microsystems.  相似文献   

11.
Journal of Applied Phycology - Silica polycondensation occurring in diatom organelles called silica deposition vesicles (SDVs) leads to valve and girdle band formation to complete the biosilica...  相似文献   

12.
Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.  相似文献   

13.
Davis AK  Palenik B 《Protist》2008,159(2):195-207
We report the characterization of a cell-surface protein isolated from copper-stressed cells of the centric diatom Thalassiosira pseudonana Hasle and Heimdal (CCMP 1335). This protein has an apparent molecular weight of 100kDa and is highly acidic. The 100kDa protein (p100) sequence is comprised almost entirely of a novel domain termed TpRCR for T. pseudonana repetitive cysteine-rich domain, that is repeated 8 times and that contains conserved aromatic, acidic, and potential metal-binding amino acids. The analysis of the T. pseudonana genome suggests that p100 belongs to a large family of modular proteins that consist of a variable number of TpRCR domain repeats. Based on cell surface biotinylation and antibody data, p100 appears to migrate more rapidly with SDS-PAGE when extracted from cells exposed to high levels of copper; however, the discovery of a large family of TpRCR domain-containing proteins leaves open the possibility that the antibody may be cross-reacting with members of this protein family that are responding differently to copper. The response of the gene encoding p100 at the mRNA level during synchronized progression through the normal cell cycle is similar to previously characterized genes in T. pseudonana encoding cell wall proteins called silaffins.  相似文献   

14.
Diatoms are single‐celled microalgae that possess a nanostructured, porous biosilica shell called a frustule. This study characterized the micro‐photoluminescence (μ‐PL) emission of single living cells of the photosynthetic marine diatom Thalassiosira pseudonana in response to UV laser irradiation at 325 nm using a confocal Raman microscope. The photoluminescence (PL) spectrum had two primary peaks, one centered at 500–510 nm, which was attributed to the frustule biosilica, and a second peak at 680 nm, which was attributed to auto‐fluorescence of photosynthetic pigments. The portion of the μ‐PL emission spectrum associated with biosilica frustule in the single living diatom cell was similar to that from single biosilica frustules isolated from these diatom cells. The PL emission by the biosilica frustule in the living cell emerged only after cells were cultivated to silicon depletion. The discovery of the discovery of PL emission by the frustule biosilica within a single living diatom itself, not just its isolated frustule, opens up future possibilities for living biosensor applications, where the interaction of diatom cells with other molecules can be probed by μ‐PL spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Diatoms possess silica-based cell walls with species-specific structures and ornamentations. Silica deposition in diatoms offers a model to study the processes involved in biomineralization. A new wall is produced in a specialized vesicle (silica deposition vesicle, SDV) and secreted. Thus proteins involved in wall biogenesis may remain associated with the mature cell wall. Here it is demonstrated that EDTA treatment removes most of the proteins present in mature cell walls of the marine diatom Cylindrotheca fusiformis. A main fraction consists of four related glycoproteins with a molecular mass of approximately 75 kDa. These glycoproteins were purified to homogeneity. They consist of repeats of Ca2+ binding domains separated by polypeptide stretches containing hydroxyproline. The proteins in the EDTA extract aggregate and precipitate in the presence of Ca2+. Immunological studies detected related proteins in the cell wall of the freshwater diatom Navicula pelliculosa, indicating that these proteins represent a new family of proteins that are involved in the biogenesis of diatom cell walls.  相似文献   

16.
Diatoms are unicellular organisms encased by silica-based cell walls that display species-specific structures. Morphogenesis of diatom cell walls is believed to be controlled by a polysaccharide/protein-matrix that remains associated with mature cell walls. Recently, a family of calcium-binding glycoproteins, the frustulins, has been identified as major diatom cell wall component. Here we describe a transformation-based approach to investigate intracellular targeting and function of frustulins. When ε-frustulin from the diatom Navicula pelliculosa is expressed in Cylindrotheca fusiformis, it is correctly targeted into the cell wall. Furthermore, the unique N-terminus of ε-frustulin was properly modified, indicating that C. fusiformis and N. pelliculosa contain homologous frustulin-processing proteases. In a different transformation experiment, a modified version of the Chlorella kessleri hexose/H+ symporter bearing a bacterial biotinyl-acceptor domain was expressed in C. fusiformis. The transporter became biotinylated in vivo and was functionally incorporated into the plasma membrane, allowing C. fusiformis to take up 14C-glucose and 14C-glucosamine. Stage-specific radioactive labeling with this transformant revealed that secretion of frustulins is strongly enhanced during cell wall development. The data presented in this study demonstrate for the first time functional expression of a membrane protein and correct targeting of a cell wall protein heterologously expressed in a diatom cell.  相似文献   

17.
Living organisms are adept in forming inorganic materials (biominerals) with unique structures and properties that exceed the capabilities of engineered materials. Biomimetic materials syntheses are being developed that aim at replicating the advantageous properties of biominerals in vitro and endow them with additional functionalities. Recently, proof-of-concept was provided for an alternative approach that allows for the production of biomineral-based functional materials in vivo. In this approach, the cellular machinery for the biosynthesis of nano-/micropatterned SiO2 (silica) structures in diatoms was genetically engineered to incorporate a monomeric, cofactor-independent (“simple”) enzyme, HabB, into diatom silica. In the present work, it is demonstrated that this approach is also applicable for enzymes with “complex” activity requirements, including oligomerization, metal ions, organic redox cofactors, and posttranslational modifications. Functional expression of the enzymes β-glucuronidase, glucose oxidase, galactose oxidase, and horseradish peroxidase in the diatom Thalassiosira pseudonana was accomplished, and 66 to 78% of the expressed enzymes were stably incorporated into the biosilica. The in vivo incorporated enzymes represent approximately 0.1% (wt/wt) of the diatom biosilica and are stabilized against denaturation and proteolytic degradation. Furthermore, it is demonstrated that the gene construct for in vivo immobilization of glucose oxidase can be utilized as the first negative selection marker for diatom genetic engineering.  相似文献   

18.
Biosilica from diatoms is formed at ambient conditions under the control of biological and physicochemical processes. The changes in growth and biosilica formation through uptake of different concentrations of Cd2+ by the diatom Nitzschia palea (Kützing) W. Smith was investigated, correlating Cd2+ effects to changes in the biosilica nanostructure and the relative content of the encapsulated biomolecules. Diatom growth rates at different Cd2+ concentrations (as 1, 2, 3, 4, and 5 × 10?1 mg L?1 CdCl2) were studied in order to determine the concentrations at which sublethal effects were visible, allowing the harvest of sufficient diatom cells for further experiments. We found a clear correlation between the Cd2+ concentrations and both the nanostructure of the biosilica and content of encapsulated peptides. Cd2+ induced biosilica deformation was assessed by scanning electron microscopy and attenuated total reflectance‐Fourier Transformed Infrared Spectroscopy (FTIR), revealing that micromorphological changes in frustule features (striae, costae, pores) and nanostructural modifications (structure of the silica and conformation of the encapsulated peptides) occurred at applied Cd2+ concentrations of 2 and 3 × 10?1 mg L?1. In particular the FTIR contribution of peptides decreased at elevated Cd2+ concentrations, whereas shifts in wave number of several relevant organic bonds as C = O stretching (1765 cm?1) and possibly hydrated sulfate (1160, 1110 and 980 cm?1) were assigned. Additional analysis of the amide I band showed a relative increase in β‐sheet structure (1680–1620 cm?1) when Cd2+ concentration increased. Cadmium uptake clearly affected the molecular ordering of the biosilica in Nitzschia palea, most probably by interfering in biological or physicochemical processes involved in diatom biosilicification.  相似文献   

19.
The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids.  相似文献   

20.
We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP•Ca2+-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP•Ca2+-complex and 50 µmoles/L biosilica) from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing bioglass, provide a suitable strategy for the fabrication of morphogenetically active and biodegradable implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号