首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin B(6)-dependent enzymes may be grouped into five evolutionarily unrelated families, each having a different fold. Within fold type I enzymes, L-threonine aldolase (L-TA) and fungal alanine racemase (AlaRac) belong to a subgroup of structurally and mechanistically closely related proteins, which specialised during evolution to perform different functions. In a previous study, a comparison of the catalytic properties and active site structures of these enzymes suggested that they have a catalytic apparatus with the same basic features. Recently, recombinant D-threonine aldolases (D-TAs) from two bacterial organisms have been characterised, their predicted amino acid sequences showing no significant similarities to any of the known B(6) enzymes. In the present work, a comparative structural analysis suggests that D-TA has an alpha/beta barrel fold and therefore is a fold type III B(6) enzyme, as eukaryotic ornithine decarboxylase (ODC) and bacterial AlaRac. The presence of both TA and AlaRac in two distinct evolutionary unrelated families represents a novel and interesting example of convergent evolution. The independent emergence of the same catalytic properties in families characterised by completely different folds may have not been determined by chance, but by the similar structural features required to catalyse pyridoxal phosphate-dependent aldolase and racemase reactions.  相似文献   

2.
The question of parallel (alpha/beta)8-barrel fold evolution remains unclear, owing mainly to the lack of sequence homology throughout the amino acid sequences of (alpha/beta)8-barrel enzymes. The "classical" approaches used in the search for homologies among (alpha/beta)8-barrels (e.g., production of structurally based alignments) have yielded alignments perfect from the structural point of view, but the approaches have been unable to reveal the homologies. These are proposed to be "hidden" in (alpha/beta)8-barrel enzymes. The term "hidden homology" means that the alignment of sequence stretches proposed to be homologous need not be structurally fully satisfactory. This is due to the very long evolutionary history of all (alpha/beta)8-barrels. This work identifies so-called hidden homology around the strand beta 2 that is flanked by loops containing invariant glycines and prolines in 17 different (alpha/beta)8-barrel enzymes, i.e., roughly in half of all currently known (alpha/beta)8-barrel proteins. The search was based on the idea that a conserved sequence region of an (alpha/beta)8-barrel enzyme should be more or less conserved also in the equivalent part of the structure of the other enzymes with this folding motif, given their mutual evolutionary relatedness. For this purpose, the sequence region around the well-conserved second beta-strand of alpha-amylase flanked by the invariant glycine and proline (56_GFTAIWITP, Aspergillus oryzae alpha-amylase numbering), was used as the sequence-structural template. The proposal that the second beta-strand of (alpha/beta)8-barrel fold is important from the evolutionary point of view is strongly supported by the increasing trend of the observed beta 2-strand structural similarity for the pairs of (alpha/beta)8-barrel enzymes: alpha-amylase and the alpha-subunit of tryptophan synthase, alpha-amylase and mandelate racemase, and alpha-amylase and cyclodextrin glycosyltransferase. This trend is also in agreement with the existing evolutionary division of the entire family of (alpha/beta)8-barrel proteins.  相似文献   

3.
Degenerate oligodeoxyribonucleotide (oligo) primers derived from amino acid (aa) sequence motifs held in common between all members of the protein tyrosine kinase (PTK) family were used to prime the amplification of PTK-related sequences from a variety of murine cDNA sources, including the haemopoietic cell lines, FDC-P1 and WEHI-3B D+, peritoneal macrophages and whole brain. Several parameters, such as the length (short, i.e., less than 20 nucleotides (nt) vs. long, i.e., greater than 30 nt) and degeneracy (i.e., moderately degenerate vs. highly degenerate) of the oligo primers and the temperature of the extension phase of the reaction, were examined. The data from these analyses suggest that the most effective type of primer in this application of the polymerase chain reaction is a short, moderately degenerate oligo such as that which might be derived from the small patches of aa sequence homology that are frequently found to be held in common among members of protein families. In addition to a number of previously described PTK sequences, a novel mammalian PTK-related sequence was uncovered.  相似文献   

4.
Genes argD and ARG8, encoding the acetylornithine aminotransferase (ACOAT) subunit in Escherichia coli and Saccharomyces cerevisiae, respectively, have been cloned and sequenced. The deduced amino acid sequences show substantial similarity. Moreover, they resemble ornithine aminotransferase (OAT) sequences (i.e., those from yeast, rat and man); the observed similarities are statistically significant, indicating that the enzymes are homologous. However, in contrast to OATs, which appear to be substrate (i.e., ornithine)-specific, S. cerevisiae ACOAT transaminates ornithine about as efficiently as E. coli does. The evolutionary relationship between ACOATs and OATs is discussed in terms of substrate ambiguity.  相似文献   

5.
Pyridoxamine-pyruvate aminotransferase is a PLP (pyridoxal 5'-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine-pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the alpha family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429-432]. The K(d) value for pyridoxal determined by means of CD was 100-fold lower than the K(m) value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed.  相似文献   

6.
A cDNA library was constructed with mRNA isolated from heat-stressed cell cultures of Funaria hygrometrica (Bryophyta, Musci, Funariaceae). cDNA clones encoding six cytosolic small heat shock proteins (sHSPs) were identified using differential screening. Phylogenetic analysis of these sHSP sequences with other known sHSPs identified them as members of the previously described higher plant cytosolic class I and II families. Four of the F. hygrometrica sHSPs are members of the cytosolic class I family, and the other two are members of the cytosolic class II family. The presence of members of the cytosolic I and II sHSP families in a bryophyte indicates that these gene families are ancient, and evolved at least 450 MYA. This result also indicates that the plant sHSP gene families duplicated much earlier than did the well-studied phytochrome gene family. Members of the cytosolic I and II sHSP families are developmentally regulated in seeds and flowers in higher plants. Our findings show that the two cytosolic sHSP families evolved before the appearance of these specialized structures. Previous analysis of angiosperm sHSPs had identified class- or family-specific amino acid consensus regions and determined that rate heterogeneity exists among the different sHSP families. The analysis of the F. hygrometrica sHSP sequences reveals patterns and rates of evolution distinct from those seen among angiosperm sHSPs. Some, but not all, of the amino acid consensus regions identified in seed plants are conserved in the F. hygrometrica sHSPs. Taken together, the results of this study illuminate the evolution of the sHSP gene families and illustrate the importance of including representatives of basal land plant lineages in plant molecular evolutionary studies.  相似文献   

7.
Nucleotide sequences were determined for alpha1,3 galactosyltransferases (alpha1,3 GalTs) from several species (bat, mink, dog, sheep, and dolphin) and compared with those previously determined for this enzyme and members of the alpha1,3 galactosyl/N-acetylgalactosyltransferase (alpha1,3 Gal(NAc)Ts) family of enzymes. Sequence comparison of the newly characterized alpha1,3 GalT nucleotide and predicted amino acid sequences with those previously characterized for other alpha1,3GalT enzymes demonstrated a remarkable level of sequence identity at the nucleotide and amino acid level. The identity of each sequence as an alpha1,3 GalT was confirmed by expressing the encoded protein and characterizing the resulting enzyme. The alpha1,3 GalTs have a significant degree of sequence homology with A and B transferases, the alpha1,3 GalNAcT that catalyzes the synthesis of Forssman antigen, and the recently cloned iso-globotriaosylceramide synthase. Among the conserved residues, there are two Cys residues. To determine if these conserved residues are free or involved in the formation of a disulfide bond, bovine alpha1,3 GalT was characterized by chemical modification and mass spectrometry. Each peptide containing a Cys residue was chemically labeled with an alkylating reagent demonstrating that these enzymes do not contain disulfide bonds. Similar results have recently been reported for A and B transferases (Yen et al., 2000, J. Mass. Spectrom., 35, 990-1002). Thus, the highly conserved Cys residues found in these members of the alpha1,3 Gal(NAc)Ts family of enzymes are likely involved in other important aspects of enzyme structure/function within this enzyme family.  相似文献   

8.
9.
The AAC(6') enzymes inactivate aminoglycoside antibiotics by acetylating their substrates at the 6' position. Based on functional similarity and size similarity, the AAC(6') enzymes have been considered to be members of a single family. Our phylogenetic analysis shows that the AAC(6') enzymes instead belong to three unrelated families that we now designate as [A], [B], and [C] and that aminoglycoside acetylation at the 6' position has evolved independently at least three times. AAC(6')-Iaa is a typical member of the [A] family in that it acetylates tobramycin, kanamycin, and amikacin effectively but acetylates gentamicin ineffectively. The potential of the aac(6')-Iaa gene to increase resistance to tobramycin, kanamycin, or amikacin or to acquire resistance to gentamicin was assessed by in vitro evolution. Libraries of PCR mutagenized alleles were screened for increased resistance to tobramycin, kanamycin, and amikacin, but no isolates that conferred more resistance than the wild-type gene were recovered. The library sizes were sufficient to conclude with 99.9% confidence that no single amino acid substitution or combination of two amino acid substitutions in aac(6')-Iaa is capable of increasing resistance to the antibiotics used. It is therefore very unlikely that aac(6')-Iaa of S. typhimurium LT2 has the potential to evolve increased aminoglycoside resistance in nature. The practical implications of being able to determine the evolutionary limits for other antibiotic resistance genes are discussed.  相似文献   

10.
alpha 1-Proteinase inhibitors (alpha 1-PIs) are members of the serpin superfamily of proteinase inhibitors, and are important in the maintenance of homeostasis in a wide variety of animal taxa. Previous studies have shown that in mice (genus Mus), evolution of alpha 1-PIs is characterized by gene amplification, region-specific concerted evolution, and rapid accumulation of amino acid substitutions. The latter occurs primarily in the reactive center, which is the region of the alpha 1-PI molecule that determines the inhibitor's specificity for target proteinases. The P1 residue within the reactive center, which is methionine in so-called orthodox alpha 1-PIs and an amino acid other than methionine in unorthodox alpha 1-PIs, is a primary determinant of inhibitor specificity. In the present study, we find that the expression of mRNAs encoding unorthodox alpha 1-PIs is polymorphic within Mus species, i.e., among individuals or inbred strains. This is in striking contrast to mRNAs that encode orthodox alpha 1-PIs, whose concentrations are relatively invariant. The intraspecies variations in mRNA expression represent polymorphisms in the structure of the alpha 1- PI gene family. The results, taken together with previously described aspects of alpha 1-PI evolution, indicate that the dissimilar levels of polymorphism exhibited by orthodox and unorthodox alpha 1-PIs, which likely have distinct physiological functions, may reflect different levels of selective constraint. The significance of this finding to the evolution of gene families is discussed.   相似文献   

11.
12.
Over 80 beta-1,4-glucanases and beta-1,4-xylanases can be classified into one of eight families on the basis of amino acid sequence similarities in their catalytic domains (Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., Jr., and Warren, R. A. J. (1991) Microbiol. Rev. 55, 303-315). As a test of this classification, the stereochemical course of hydrolysis of 10 enzymes representative of five families has been determined using proton NMR. These data, together with published data for six additional enzymes, show that representatives of a given enzyme family have the same stereoselectivity: four families catalyze hydrolysis with retention of anomeric configuration, two with inversion. The results support the hypothesis that family members share a common general fold, active site topology, and catalytic mechanism.  相似文献   

13.
On the basis of the analysis of 64 glycosyltransferases from 14 species we propose that several successive duplications of a common ancestral gene, followed by divergent evolution, have generated the mannosyltransferases and the glucosyltransferases involved in asparagine-linked glycosylation (ALG) and phosphatidyl-inositol glycan anchor (PIG or GPI), which use lipid-related donor and acceptor substrates. Long and short conserved peptide motifs were found in all enzymes. Conserved and identical amino acid positions were found for the alpha 2/6- and the alpha 3/4-mannosyltransferases and for the alpha 2/3-glucosyltransferases, suggesting unique ancestors for these three superfamilies. The three members of the alpha 2-mannosyltransferase family (ALG9, PIG-B, and SMP3) and the two members of the alpha 3-glucosyltransferase family (ALG6 and ALG8) shared 11 and 30 identical amino acid positions, respectively, suggesting that these enzymes have also originated by duplication and divergent evolution. This model predicts a common genetic origin for ALG and PIG enzymes using dolichyl-phospho-monosaccharide (Dol-P-monosaccharide) donors, which might be related to similar spatial orientation of the hydroxyl acceptors. On the basis of the multiple sequence analysis and the prediction of transmembrane topology we propose that the endoplasmic reticulum glycosyltransferases using Dol-P-monosaccharides as donor substrate have a multispan transmembrane topology with a first large luminal conserved loop containing the long motif and a small cytosolic conserved loop containing the short motif, different from the classical type II glycosyltransferases, which are anchored in the Golgi by a single transmembrane domain.  相似文献   

14.
The pyridoxal-5'-phosphate-dependent enzymes (B6 enzymes) are grouped into three main families named alpha, beta, and gamma. Proteins in the alpha and gamma families share the same fold and might be distantly related, while those in the beta family exhibit specific structural features. The rat aromatic L-amino acid decarboxylase (AADC; EC(4.1.1.28)) catalyzes the synthesis of two important neurotransmitters: dopamine and serotonin. It binds the cofactor pyridoxal-5'-phosphate and belongs to the alpha family. Despite the low level of sequence identity (approximately 10%) shared by the rat AADC and the sequences of the enzymes belonging to the B6 enzymes family, including the known three-dimensional structures, a multiple sequence alignment was deduced. A model was built using segments belonging to seven of the eleven known structures. By homology, and based on knowledge of the biochemistry of the aspartate aminotransferase, structurally and functionally important residues were identified in the rat AADC. Site-directed mutagenesis of the conserved residues D271, T246, and C311 was carried out in order to confirm our predictions and highlight their functional role. Mutation of D271A and D271N resulted in complete loss of enzyme activity, while the D271E mutant exhibited 2% of the wild-type activity. Substitution of T246A resulted in 5% of the wild-type activity while the C311A mutant conserved 42% of the wild-type activity. A functional model of the AADC is discussed in view of the structural model and the complementary mutagenesis and labelling studies.  相似文献   

15.
Family profile analysis (FPA), described in this paper, compares all available homologous amino acid sequences of a target family with the profile of a probe family while conventional sequence profile analysis (Gribskov M, Lüthy R, Eisenberg D. Meth Enzymol 1990;183:146-159) considers only a single target sequence in comparison with the probe family. The increased input of sequence information in FPA expands the range for sequence-based recognition of structural relationships. In the FPA algorithm, Zscores of each of the target sequences, obtained from a probe profile search over all known amino acid sequences, are averaged and then compared with the scores for sequences of 100 reference families in the same probe family search. The resulting F-Zscore of the target family, expressed in "effective standard deviations" of the mean Zscores of the reference families, with value above a threshold of 3.5 indicates a statistically significant evolutionary relationship between the target and probe families. The sensitivity of FPA to sequence information was tested with several protein families where distant relationships have been verified from known tertiary protein architectures, which included vitamin B6-dependent enzymes, (beta/alpha)8-barrel proteins, beta-trefoil proteins, and globins. In comparison to other methods, FPA proved to be significantly more sensitive, finding numerous new homologies. The FPA technique is not only useful to test a suspected relationship between probe and target families but also identifies possible target families in profile searches over all known primary structures.  相似文献   

16.
Serine hydroxymethyltransferase (SHMT) is a member of the fold type I family of vitamin B6-dependent enzymes, a group of evolutionarily related proteins that share the same overall fold. The reaction catalysed by SHMT, the transfer of Cbeta of serine to tetrahydropteroylglutamate (H4PteGlu), represents in the cell an important link between the breakdown of amino acids and the metabolism of folates. In the absence of H4PteGlu and when presented with appropriate substrate analogues, SHMT shows a broad range of reaction specificity, being able to catalyse at appreciable rates retroaldol cleavage, racemase, aminotransferase and decarboxylase reactions. This apparent lack of specificity is probably a consequence of the particular catalytic apparatus evolved by SHMT. An interesting question is whether other fold type I members that normally catalyse the reactions which for SHMT could be considered as 'forced errors', may be close relatives of this enzyme and have a catalytic apparatus with the same basic features. As shown in this study, l-threonine aldolase from Escherichia coli is able to catalyse the same range of reactions catalysed by SHMT, with the exception of the serine hydroxymethyltransferase reaction. This observation strongly suggests that SHMT and l-threonine aldolase are closely related enzymes specialized for different functions. An evolutionary analysis of the fold type I enzymes revealed that SHMT and l-threonine aldolase may actually belong to a subgroup of closely related proteins; fungal alanine racemase, an extremely close relative of l-threonine aldolase, also appears to be a member of the same subgroup. The construction of three-dimensional homology models of l-threonine aldolase from E. coli and alanine racemase from Cochliobolus carbonum, and their comparison with the SHMT crystal structure, indicated how the tetrahydrofolate binding site might have evolved and offered a starting point for further investigations.  相似文献   

17.
Cholesterol hemisuccinate (compound 5), which consists of succinic acid esterified to the beta-hydroxyl group of cholesterol, selectively and strongly inhibited the activities of mammalian DNA polymerases (pols) such as pol beta, pol lambda, and terminal deoxynucleotidyltransferase (TdT), which are family X pols, in vitro, and the IC50 values were 2.9, 6.3, and 6.5 microM, respectively. The compound moderately suppressed the activities of other mammalian pols such as pol A (i.e., pol gamma), pol B (i.e., pols alpha, delta, and epsilon), and pol Y (i.e., pols iota, eta, and kappa) with 50% inhibition observed at concentrations of 131, 89.2-98.0, and 120-125 microM, respectively. The compound had no influence on the activities of plant pols alpha and beta, prokaryotic pols and other DNA metabolic enzymes tested. Since other cholesterol-related compounds such as cholesterol, cholesteryl chloride, cholesteryl bromide, cholesteryl acetate, and cholesteryl-5alpha, 6alpha-epoxide (compounds 1-4 and 6, respectively) did not influence the activities of any enzymes tested, the hemisuccinate group of compound 5 could be important for inhibition of the pol X family. Surface plasmon resonance analysis demonstrated that compound 5 bound selectively to the C-terminal 31 kDa domain of pol beta and pol lambda containing a pol beta-like region. On the basis of these results, the inhibitory mechanism of compound 5 on the pol X family was discussed.  相似文献   

18.
Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.  相似文献   

19.
The prolyl oligopeptidase (POP) family of serine proteases includes prolyl oligopeptidase, dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B. The enzymes of this family specifically hydrolyze oligopeptides with less than 30 amino acids. Many of the POP family enzymes have evoked pharmaceutical interest as they have roles in the regulation of peptide hormones and are involved in a variety of diseases such as dementia, trypanosomiasis and type 2 diabetes. In this study we have clarified the evolutionary relationships of these four POP family enzymes and analyzed POP sequences from different sources. The phylogenetic trees indicate that the four enzymes were present in the last common ancestor of all life forms and that the beta-propeller domain has been part of the family for billions of years. There are striking differences in the mutation rates between the enzymes and POP was found to be the most conserved enzyme of this family. However, the localization of this enzyme has changed throughout evolution, as three archaeal POPs seem to be membrane bound and one third of the bacterial as well as two eukaryotic POPs were found to be secreted out of the cell. There are also considerable distinctions between the mutation rates of the different substrate binding subsites of POP. This information may help in the development of species-specific POP inhibitors.  相似文献   

20.
Vitamin B6 in its active form pyridoxal phosphate is an essential coenzyme of many diverse enzymes. Biochemistry, enzymology and genetics of de novo vitamin B6 biosynthesis have been primarily investigated in Escherichia coli. Database searches revealed that the key enzymes involved in ring closure of the aromatic pyridoxin ring (PdxA; PdxJ) are present mainly in genomes of bacteria constituting the gamma subdivision of proteobacteria. The distribution of DXS, a transketolase-like enzyme involved in vitamin B6 biosynthesis as well as in thiamine and isoprenoid biosynthesis and the distribution of vitamin B6 modifying enzymes (PdxH: oxidase; PdxK: kinase) was also analyzed. These enzymes are also present in the genomes of animals. Two recent papers (Ehrenshaft et al., 1999, Proc. Natl. Acad. Sci. USA. 96: 9374-9378; Osmani et al., 1999, J. Biol. Chem. 274: 23565-23569) show the involvement of an extremely conserved protein (a member of the UPF0019 or SNZ family) found in all three domains of life (bacteria, archaea, eukarya) in an alternative vitamin B6 biosynthesis pathway. Members of this family were previously identified as a stationary phase inducible protein in yeast, as an ethylene responsible protein in plants and in a marine sponge, as a singlet oxygen resistance protein in Cercospora nicotianae and as a cumene hydroperoxide and H2O2 inducible protein in Bacillus subtilis. In yeast, the SNZ protein interacts with another protein called SNO which also represents a member of a highly conserved protein family (called UPF0030 or SNO family). Phylogenetic trees for the DXS, PdxA, PdxJ, PdxH, PdxK, SNZ and SNO protein families are presented and possible implications of the two different vitamin B6 biosynthesis pathways in cellular metabolism are discussed. A radically different view of bacterial evolution (Gupta, 2000, Crit. Rev. Microbiol. 26: 111-131) which proposes a linear rather than a treelike evolutionary relationship between procaryotic species indicates that the gamma subdivision of proteobacteria represents the most recently evolved bacterial lineage. This proposal might help to explain why the PdxA/PdxJ pathway is largely restricted to this subdivision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号