首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Saccharomyces cerevisiae devoid of Cu,Zn-superoxide dismutase are hypersensitive to a range of oxidants, hyperbaric oxygen and hyperosmotic media, show lysine and methionine auxotrophy when grown under the atmosphere of air and have a shortened replicative life span when compared to the wild-type strain. Ascorbate and other antioxidants can ameliorate these defects, which may be a basis of simple tests sensing the presence of antioxidants. In particular, tests of growth on solid medium (colony formation) in the absence of methionine and/or lysine, or in the presence of 0.8 M NaCl can be useful for detection and semiquantitative estimation of compounds of antioxidant properties. Hypoxic atmosphere was found to increase the sensitivity of detection of antioxidants. The test of abolishment of lysine auxotrophy showed a concentration dependence of the antioxidant effects of cysteine and N-acetylcysteine which, however, lost their protective action at high concentration, in contrast to glutathione which was effective also at higher concentrations.  相似文献   

2.
Yeast (Saccharomyces cerevisiae) mutants lacking CuZnSOD have been reported to be hypersensitive to hypertonic media and to show increased oxidative damage. This study demonstrates that hypertonic medium (containing 0.8 M NaCl) increases the generation of superoxide and other reactive species in yeast cells. Other sequelae of exposure to hypertonic medium include oxidation of cellular low-molecular weight thiols and decrease in total antioxidant capacity of cellular extracts. deltasod1 mutant is more sensitive than a wild-type strain to colony growth inhibition on a hypertonic medium. Anaerobic conditions, ascorbate, glutathione, cysteine and dithiothreitol are able to ameliorate this growth inhibition but a range of other antioxidants does not protect. The protective ability of the antioxidants does not correlate with the rate of their reactions with superoxide but seems to be conditioned by low redox potential for one-electron oxidation of free radicals of the antioxidants. It suggests that repair of low-redox potential targets rather than prevention of their damage by superoxide is important in the antioxidant protection against oxidative stress induced by hypertonic conditions.  相似文献   

3.
Hydrophobic cations with delocalized charge are used to deliver drugs to mitochondria. However, micromolar concentrations of such compounds could be toxic due to their excessive accumulation in mitochondria. We studied possible pathophysiological effects of one such cation, i.e. dodecyltriphenylphosphonium (C12-TPP), in the yeast Saccharomyces cerevisiae. First, we found that C12-TPP induces high-amplitude mitochondrial swelling. The swelling can be prevented by addition of protonophorous uncoupler FCCP or antioxidant alpha-tocopherol, but not other tested antioxidants (N-acetylcysteine and Trolox). Second, FCCP prevents ROS-sensitive fluorescent dye (dichlorofluorescein diacetate) staining of yeast treated with C12-TPP. We also showed that all tested antioxidants partially restore the growth inhibited by C12-TPP. The latter points that ROS rather than the mitochondria swelling limit the growth rate.  相似文献   

4.
This study investigated the ability of the yeast Saccharomyces cerevisiae to synthesize ascorbate and its 5-carbon analogue erythroascorbate from a variety of precursors, and their importance as antioxidants in this organism. Studies of ascorbate and analogues in micro-organisms have been reported previously, but their function as antioxidants have been largely ignored. Ascorbate and erythroascorbate concentrations in yeast extracts were measured spectrophotometrically, and their levels and identity were checked using liquid chromatography-electrospray mass spectrometry. The yeast was readily able to synthesize ascorbate from L-galactono-1,4-lactone or erythroascorbate from D-arabinose and D-arabino-1,4-lactone, whereas L-gulono-1,4-lactone was a much poorer substrate for ascorbate biosynthesis. In untreated cells, the concentration of ascorbate-like compounds was below the level of detection of the methods of analysis used in this study (approximately 0.1 mM). Intracellular ascorbate and erythroascorbate were oxidized at high concentrations of tert-butylhydroperoxide, but not hydrogen peroxide. Their synthesis was not increased in response to low levels of stress, however, and preloading with erythroascorbate did not protect glutathione levels during oxidative stress. This study provides new information on the metabolism of ascorbate and erythroascorbate in S. cerevisiae, and suggests that erythroascorbate is of limited importance as an antioxidant in S. cerevisiae.  相似文献   

5.
Yeast (Saccharomyces cerevisiae) mutants lacking CuZnSOD have been reported to be hypersensitive to hypertonic media and to show increased oxidative damage. This study demonstrates that hypertonic medium (containing 0.8?M NaCl) increases the generation of superoxide and other reactive species in yeast cells. Other sequelae of exposure to hypertonic medium include oxidation of cellular low-molecular weight thiols and decrease in total antioxidant capacity of cellular extracts. Δsod1 mutant is more sensitive than a wild-type strain to colony growth inhibition on a hypertonic medium. Anaerobic conditions, ascorbate, glutathione, cysteine and dithiothreitol are able to ameliorate this growth inhibition but a range of other antioxidants does not protect. The protective ability of the antioxidants does not correlate with the rate of their reactions with superoxide but seems to be conditioned by low redox potential for one-electron oxidation of free radicals of the antioxidants. It suggests that repair of low-redox potential targets rather than prevention of their damage by superoxide is important in the antioxidant protection against oxidative stress induced by hypertonic conditions.  相似文献   

6.
The effects of phenolic acids of microbial origin on mitochondrial functions and the possibility of removing their effects by thiol antioxidants dithiotreitol and N-acetylcysteine were studied. The action of some phenolic acids on the redox state of NADH, the membrane potential and calcium capacity of mitochondria is due to their interaction with thiol groups. Partial restoration of mitochondrial functions occurred in the presence of dithiotreitol and N-acetylcysteine, full recovery (short-term duration) was promoted by the combined action of dithiotreitol and menadione (vitamin K3). It was found that the protective effect of thiol antioxidants became prooxidant if the medium contained free iron and compounds with quinone structure, capable of entering into a redox cycle with thiols. It is shown that the interaction of thiols with iron and menadione is accompanied by absorption of oxygen to form superoxide anion. Prooxidant effect of thiol antioxidants may explain the absence of the protective effect at the later stages of sepsis and systemic inflammatory syndrome.  相似文献   

7.
Overproduction of reactive oxygen species associated with several diseases including sickle cell anaemia reduces the concentration of glutathione, a principal cellular antioxidant. Glutathione depletion in sickle erythrocytes increases their conversion to irreversible sickle cells that promote vaso-occlusion. Therapeutically, N-acetylcysteine partially restores glutathione concentrations but its mode of action is controversial. Following glutathione depletion, glutathione synthesis is limited by the supply of cysteine and it has been assumed that deacetylation of N-acetylcysteine within erythrocytes provides cysteine to accelerate glutathione production. To determine whether this is the case we studied the kinetics of transport and deacetylation of N-acetylcysteine. Uptake of N-acetylcysteine had a first order rate constant of 2.40+/-0.070min(-1) and only saturated above 10mM. Inhibition experiments showed that 56% of N-acetylcysteine transport was via the anion exchange protein. Deacetylation, measured using (1)H NMR, had a K(m) of 1.49+/-0.16mM and V(max) of 2.61+/-0.08micromolL(-1)min(-1). Oral doses of N-acetylcysteine increase glutathione concentrations in sickle erythrocytes at plasma N-acetylcysteine concentrations of approximately 10microM. At this concentration, calculated rates of N-acetylcysteine uptake and deacetylation were approximately 5% of the rate required to maintain normal glutathione production. We concluded that on oral administration, intracellular deacetylation of N-acetylcysteine supplies little of the cysteine required for accelerated glutathione production. Instead, N-acetylcysteine acts by freeing bound cysteine in the plasma that then enters the erythrocytes. To be effective, intracellular cysteine precursors must be designed to enter erythrocytes rapidly and employ enzymes with high activity within erythrocytes to liberate the cysteine.  相似文献   

8.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

9.
The effects of various concentrations of dithiothreitol, molecular oxygen, and several antioxidants upon the in vitro replication of Treponema pallidum were studied. The optimal dithiothreitol concentration was between 0.65 and 1.62 mM, and the optimum oxygen concentration was 3.0% +/- 0.5% in both the presence and absence of additional antioxidants. It was discovered that the reduced sulfhydryl concentration and the oxidation-reduction potential of the medium were stabilized after 5 days. The water-soluble antioxidants cobalt chloride, cocarboxylase, mannitol, and histidine were individually tested for their ability to increase treponemal growth in vitro. The optimum concentrations for these antioxidants were 21 nM, 4.3 nM, 0.55 mM, and 0.23 mM, respectively. When combined at these concentrations, the mixture of antioxidants stimulated the in vitro replication of T. pallidum. The number of treponemes in cultures with the antioxidants averaged a 59-fold increase, compared with a 43-fold increase in cultures lacking the antioxidants. It was further demonstrated that histidine and mannitol were the most critical components of this mixture. Catalase and superoxide dismutase were investigated for their ability to promote the growth and maintain viability of T. pallidum in tissue culture. The optimum concentrations for these enzymes were 10,000 U/liter and 25,000 U/liter, respectively. When these enzymes and the above antioxidants were combined and added to a chemically reduced modified Eagle medium, the treponemes increased an average of 70-fold, compared with an average of 35-fold in cultures lacking them. Furthermore, this medium, T. pallidum culture medium, supported the replication of T. pallidum at oxygen concentrations from 5 to 7% with little loss in yield or viability. The lipid-soluble antioxidants vitamin A and vitamin E acetate were also shown to enhance the in vitro growth of T. pallidum in this medium.  相似文献   

10.
The effects of various concentrations of dithiothreitol, molecular oxygen, and several antioxidants upon the in vitro replication of Treponema pallidum were studied. The optimal dithiothreitol concentration was between 0.65 and 1.62 mM, and the optimum oxygen concentration was 3.0% +/- 0.5% in both the presence and absence of additional antioxidants. It was discovered that the reduced sulfhydryl concentration and the oxidation-reduction potential of the medium were stabilized after 5 days. The water-soluble antioxidants cobalt chloride, cocarboxylase, mannitol, and histidine were individually tested for their ability to increase treponemal growth in vitro. The optimum concentrations for these antioxidants were 21 nM, 4.3 nM, 0.55 mM, and 0.23 mM, respectively. When combined at these concentrations, the mixture of antioxidants stimulated the in vitro replication of T. pallidum. The number of treponemes in cultures with the antioxidants averaged a 59-fold increase, compared with a 43-fold increase in cultures lacking the antioxidants. It was further demonstrated that histidine and mannitol were the most critical components of this mixture. Catalase and superoxide dismutase were investigated for their ability to promote the growth and maintain viability of T. pallidum in tissue culture. The optimum concentrations for these enzymes were 10,000 U/liter and 25,000 U/liter, respectively. When these enzymes and the above antioxidants were combined and added to a chemically reduced modified Eagle medium, the treponemes increased an average of 70-fold, compared with an average of 35-fold in cultures lacking them. Furthermore, this medium, T. pallidum culture medium, supported the replication of T. pallidum at oxygen concentrations from 5 to 7% with little loss in yield or viability. The lipid-soluble antioxidants vitamin A and vitamin E acetate were also shown to enhance the in vitro growth of T. pallidum in this medium.  相似文献   

11.
The connections between the presence of low molecular weight RSH-antioxidants (N-acetylcysteine, glutathione) in serum-free medium, generation of reactive oxygen species (ROS), and proliferation of SP2/0-SF mouse myeloma cells have been demonstrated. It is shown that the presence of RSH compounds in the medium within the studied range of concentrations changed the contents of ROS in cells and had a dose-dependent effect on cell proliferation. Stimulation of the proliferative activity did not depend on the nature of an RSH compound. The optimal concentration for the both antioxidants was 0.2 mM. A further increase of the concentration led to inhibition of cell proliferation to different degrees for N-acetylcysteine and glutathione.  相似文献   

12.
The formation of lactate from glyceraldehyde is catalyzed by the thiol, N-acetylcysteine, at ambient temperature in aqueous sodium phosphate (pH 7.0). The rate of lactate formation is more rapid at higher concentrations of sodium phosphate and is essentially the same in the presence and absence of oxygen. The formation of lactate is efficient, but proceeds slowly with an 8.8% yield of lactate after 16 days from 10 mM glyceraldehyde in the presence of 12.5 mM N-acetylcysteine and 500 mM sodium phosphate (pH 7.0). The formation of glycerate from glyceraldehyde, that occurs in the presence of oxygen and to a small extent when oxygen has been removed, is also catalyzed by the thiol, N-acetylcysteine, under the same conditions. The dramatic increase in the rate of glycerate formation that is brought about by the thiol, N-acetylcysteine, is accompanied by an equally dramatic decrease in the rates of production of glycolate and formate. Presumably, the thiol-dependent formation of lactate and glycerate occurs via their respective thioesters. The significance of these reactions to molecular evolution is discussed.  相似文献   

13.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

14.
Efficacy of several antioxidants in the protection of the yeast Saccharomyces cerevisiae mutants deficient in CuZnSOD and deficient in glutaredoxin 5 to growth restriction induced by oxidants was studied. Ascorbate and glutathione protected the Δsod1 and Δgrx5 mutants against the effects of t-butyl hydroperoxide and cumene hydroperoxide, Δsod1 mutants against oxytetracycline and Δgrx5 mutants against menadione and 2,2'-azobis-(2-amidinopropane). However, Tempol, Trolox and melatonin were much less effective, showing prooxidative effects and, at high concentrations, hampering the growth of the mutants in the absence of exogenous oxidants. These results point to a complication of cellular effects of antioxidants by their prooxidative effects and to the usefulness of cellular tests to evaluate the biological effectiveness of antioxidants.  相似文献   

15.
Kaur J  Bachhawat AK 《Genetics》2007,176(2):877-890
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but not of the other genes encoding for transporters that mediate cysteine uptake such as GAP1, GNP1, MUP1, or AGP1 in a met15Delta background, resulted in a growth defect when cysteine, at low concentrations, was provided as the sole sulfur source. Transport experiments further revealed that Yll055wp was the major contributor to cysteine transport under these conditions. The contributions of the other transporters became relevant only at higher concentrations of cysteine or when YLL055w was either deleted or repressed. YLL055w expression was repressed by organic sulfur sources and was mediated by the Met4p-dependent sulfur regulatory network. The results reveal that YLL055w encodes the principal cysteine transporter in S. cerevisiae, which we have named YCT1 (yeast cysteine transporter). Interestingly, Yct1p belongs to the Dal5p family of transporters rather than the amino acid permease family to which all the known amino acid transporters belong.  相似文献   

16.
Studies on the autoxidation of dopamine: interaction with ascorbate   总被引:2,自引:0,他引:2  
An oxygen electrode was used to monitor the reaction between dopamine (DA, 1-20 mM) and oxygen at pH 7.4 and 37 degrees C, in both the presence and absence of ascorbate (10 mM). The selected concentrations approximate levels within DA neurons. Diethylenetriaminepentaacetic acid (DTPA, 0.1 mM) was used to suppress catalysis by trace metals in the reagents. Separate experiments with catalase showed that oxygen consumption could be equated with the formation of hydrogen peroxide. Depending upon the experimental conditions, ascorbate acted either as an antioxidant, suppressing oxygen consumption (H2O2 production) to 6-8% of the expected rate, or as a prooxidant, amplifying oxygen consumption by 640%. The antioxidant action is consistent with the scavenging of superoxide radicals by ascorbate. The prooxidant action is probably the result of redox cycling of a pre-melanin oxidation product derived from DA. Analyses conducted by high-performance liquid chromatography with electrochemical detection revealed formation of a product with a very low oxidation potential; the product was not 6-hydroxydopamine. These observations may be relevant to concepts of toxicity mediated by DA within neuronal systems.  相似文献   

17.
Supraphysiological oxygen tension during embryo culture can generate reactive oxygen species (ROS), which can induce apoptosis. Antioxidants such as thiol compounds (cysteine, cysteamine) can be used to prevent ROS damage to the embryo. The purpose of this study was to evaluate the prevalence of apoptosis during bovine embryo development and to evaluate the effect of the presence or absence of cysteine 0.6 mM in modified synthetic oviduct fluid (mSOF) on in vitro produced cattle embryos cultured under two different oxygen tensions (5% O2 versus 20% O2). Effects were assessed by checking embryo development at Days 7, 8 and 9 and by evaluating Day 9 hatched blastocysts for differentiation by means of differential staining and for apoptosis by means of TUNEL-assay. Apoptotic cells were present in 94% of Day 7 blastocysts and in 100% of Days 8 and 9 blastocysts. Cysteine addition affected Day 8 blastocyst rates in a negative way (P < 0.05) regardless of the oxygen tension. In fact, cysteine addition to the mSOF culture medium had a negative effect upon embryo development in terms of blastocyst rates, hatching rates and apoptotic cell ratio. Embryos cultured under 5% O2 in the presence of cysteine, however, possessed significantly higher numbers of ICM cells. This finding corroborates the theoretical assumption that antioxidants are beneficial for ICM development.  相似文献   

18.
Efficacy of several antioxidants in the protection of the yeast Saccharomyces cerevisiae mutants deficient in CuZnSOD and deficient in glutaredoxin 5 to growth restriction induced by oxidants was studied. Ascorbate and glutathione protected the Δsod1 and Δgrx5 mutants against the effects of t-butyl hydroperoxide and cumene hydroperoxide, Δsod1 mutants against oxytetracycline and Δgrx5 mutants against menadione and 2,2′-azobis-(2-amidinopropane). However, Tempol, Trolox and melatonin were much less effective, showing prooxidative effects and, at high concentrations, hampering the growth of the mutants in the absence of exogenous oxidants. These results point to a complication of cellular effects of antioxidants by their prooxidative effects and to the usefulness of cellular tests to evaluate the biological effectiveness of antioxidants.  相似文献   

19.
Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non‐enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the ‘Bowman’ cultivar and a group of semi‐dwarf near‐isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non‐enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the ‘Bowman’ cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR‐insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non‐enzymatic antioxidant homeostasis.  相似文献   

20.
The importance of cysteine (Cys) and methionine (Met) residues for the antioxidant activity of human serum albumin (HSA) was investigated using recombinant HSA mutants, in which Cys34 and/or the six Met residues had been mutated to Ala. The scavenging activities of the mutants against five reactive oxygen and nitrogen species were evaluated by a chemiluminescence assay, electron paramagnetic resonance spectroscopy, or a HPLC-flow reactor assay. Our results showed that the contributions of Cys34 and the Met residues to the antioxidant activity of HSA were 61% and 29% against O(2)(?-), 68% and 61% against H(2)O(2), 38% and 6% against HO(?), 36% and 13% against HOCl, and 51% and 1% against (?)NO, respectively. Thus, the findings propose in a direct way that Cys34 plays a more important role than the Met residues in the antioxidant activity of HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号