首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.  相似文献   

2.
The nuclear lamina, a structure closely apposed to the inner nuclear membrane, is believed to provide a framework important for nuclear envelope integrity and interphase chromatin organization. So far, in mammalian and avian species three major constituents of the lamina, lamins A, B, and C, have been identified. These proteins migrate to characteristic positions on two-dimensional gels, lamin B being more acidic than lamins A and C. Here, we show that the composition of the nuclear lamina in avian and mammalian cells is more complex than previously assumed. When analyzed on two-dimensional gels, the major 66-kDa chicken "lamin B" protein can readily be identified. However, an additional 68-kDa protein migrates to a similarly acidic position. Based on the following evidence, both proteins can be considered as two distinct members of the lamin protein family. First, peptide mapping experiments and immunological criteria demonstrate that these two proteins are not related to each other or to lamin A via postsynthetic modifications or precursor-product relationships. Second, as determined by immunocytochemical techniques, both proteins are located exclusively at the nuclear periphery. Third, both proteins display the biochemical properties characteristic of lamin proteins, i.e. they are resistant to extraction of nuclei with nonionic detergents, nucleases, and high salt. Fourth, both proteins are immunologically related to previously characterized lamin proteins: the major 66-kDa chicken "lamin B" protein shares at least two epitopes with lamin A. However, contrary to what current nomenclature might suggest, this 66-kDa chicken "lamin B" protein is not related to rat liver lamin B, but to a minor component of rat liver pore-complex lamina preparations that had not previously been recognized as a lamin protein. Conversely, the minor 68-kDa component of chicken lamina preparations that had not previously been considered to be a lamin protein is immunologically related to rat liver lamin B. Thus, in addition to demonstrating the existence of quantitatively minor lamin proteins in higher vertebrates, our results caution against assigning structural homologies between lamin proteins from different species on the basis of gel electrophoresis analyses.  相似文献   

3.
Recent evidence suggests that the conserved COOH-terminal CaaX motif of nuclear lamins may play a role in targeting newly synthesized proteins to the nuclear envelope. We have shown previously that in rabbit reticulocyte lysates the cysteine residue of the CaaX motif of chicken lamin B2 is necessary for incorporation of a derivative of mevalonic acid, the precursor of isoprenoids. Here we have analyzed the properties of normal and mutated forms of chicken lamin B2 stably expressed in mouse L cells. Mutation of the cysteine residue of the CaaX motif to alanine or introduction of a stop codon immediately after the cysteine residue was found to abolish both isoprenylation and carboxyl methylation of transfected lamin B2. Concomitantly, although nuclear import of the mutant lamin B2 proteins was preserved, their association with the inner nuclear membrane was severely impaired. From these results we conclude that the COOH-terminal CaaX motif is required for isoprenylation and carboxyl methylation of lamins in vivo, and that these modifications are important for association of B-type lamins with the nucleoplasmic surface of the inner nuclear membrane.  相似文献   

4.
We have applied the fluorescence loss of intensity after photobleaching (FLIP) technique to study the molecular dynamics and organization of nuclear lamin proteins in cell lines stably transfected with green fluorescent protein (GFP)-tagged A-type lamin cDNA. Normal lamin A and C proteins show abundant decoration of the inner layer of the nuclear membrane, the nuclear lamina, and a generally diffuse localization in the nuclear interior. Bleaching studies revealed that, while the GFP-tagged lamins in the lamina were virtually immobile, the intranuclear fraction of these molecules was partially mobile. Intranuclear lamin C was significantly more mobile than intranuclear lamina A. In search of a structural cause for the variety of inherited diseases caused by A-type lamin mutations, we have studied the molecular organization of GFP-tagged lamin A and lamin C mutants R453W and R386K, found in Emery-Dreifuss muscular dystrophy (EDMD), and lamin A and lamin C mutant R482W, found in patients with Dunnigan-type familial partial lipodystrophy (FPLD). In all mutants, a prominent increase in lamin mobility was observed, indicating loss of structural stability of lamin polymers, both at the perinuclear lamina and in the intranuclear lamin organization. While the lamin rod domain mutant showed overall increased mobility, the tail domain mutants showed mainly intranuclear destabilization, possibly as a result of loss of interaction with chromatin. Decreased stability of lamin mutant polymers was confirmed by flow cytometric analyses and immunoblotting of nuclear extracts. Our findings suggest a loss of function of A-type lamin mutant proteins in the organization of intranuclear chromatin and predict the loss of gene regulatory function in laminopathies.  相似文献   

5.
Scott ES  O'Hare P 《Journal of virology》2001,75(18):8818-8830
During herpesvirus egress, capsids bud through the inner nuclear membrane. Underlying this membrane is the nuclear lamina, a meshwork of intermediate filaments with which it is tightly associated. Details of alterations to the lamina and the inner nuclear membrane during infection and the mechanisms involved in capsid transport across these structures remain unclear. Here we describe the fate of key protein components of the nuclear envelope and lamina during herpes simplex virus type 1 (HSV-1) infection. We followed the distribution of the inner nuclear membrane protein lamin B receptor (LBR) and lamins A and B(2) tagged with green fluorescent protein (GFP) in live infected cells. Together with additional results from indirect immunofluorescence, our studies reveal major morphologic distortion of nuclear-rim LBR and lamins A/C, B(1), and B(2). By 8 h p.i., we also observed a significant redistribution of LBR-GFP to the endoplasmic reticulum, where it colocalized with a subpopulation of cytoplasmic glycoprotein B by immunofluorescence. In addition, analysis by fluorescence recovery after photobleaching reveals that LBR-GFP exhibited increased diffusional mobility within the nuclear membrane of infected cells. This is consistent with the disruption of interactions between LBR and the underlying lamina. In addition to studying stably expressed GFP-lamins by fluorescence microscopy, we studied endogenous A- and B-type lamins in infected cells by Western blotting. Both approaches reveal a loss of lamins associated with virus infection. These data indicate major disruption of the nuclear envelope and lamina of HSV-1-infected cells and are consistent with a virus-induced dismantling of the nuclear lamina, possibly in order to gain access to the inner nuclear membrane.  相似文献   

6.
《The Journal of cell biology》1993,123(6):1661-1670
Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely soluble upon mitotic nuclear envelope breakdown. Somatic B-type lamins, in contrast, are permanently isoprenylated and, although depolymerized during mitosis, remain associated with remnants of nuclear envelope membranes. However, Xenopus lamin B3, the major B-type lamin of amphibian oocytes and eggs, becomes soluble after nuclear envelope breakdown in meiotic metaphase. Here we show that Xenopus lamin B3 is permanently isoprenylated and carboxyl methylated in oocytes (interphase) and eggs (meiotic metaphase). When transfected into mouse L cells Xenopus lamin B3 is integrated into the host lamina and responds to cell cycle signals in a normal fashion. Notably, the ectopically expressed Xenopus lamin does not form heterooligomers with the endogenous lamins as revealed by a coprecipitation experiment with mitotic lamins. In contrast to the situation in amphibian eggs, a significant portion of lamin B3 remains associated with membranes during mitosis. We conclude from these data that the CaaX motif-mediated modifications, although necessary, are not sufficient for a stable association of lamins with membranes and that additional factors are involved in lamin-membrane binding.  相似文献   

7.
The nuclear lamina, which provides a structural scaffolding for the nuclear envelope, consists largely of a polymer of the intermediate filament lamin proteins. Although different cell types contain distinctive relative amounts of the major lamin subtypes (A, C, B1, and B2), the functions of this variation are not understood. We have investigated the possibility that subtype variation affects lamina stability. We find that homotypic and heterotypic binding interactions of lamin B2 are substantially less resistant to chemical dissociation in vitro than those between the other lamin subtypes, whereas lamin A interactions are the most stable. Surprisingly, removal of the central four-fifths of the rod domain did not substantially weaken the interactions of lamins A and B2, suggesting that other regions also strongly contribute to their binding interactions. In contrast, this rod deletion strongly destabilizes the binding interactions of lamins B1 and C. Consistent with the binding studies, lamins are more readily solubilized by chemical extraction from cells enriched for lamin B2 than from cells enriched for lamin A. This suggests that the distinctive ensemble of heterotypic lamin interactions in a particular cell type affects the stability of the lamin polymer, and, correspondingly, could be relevant to tissue-specific properties of the lamina including its involvement in disease.  相似文献   

8.
The nuclear lamina is a karyoskeletal structure located at the nuclear periphery and intimately associated with the inner nuclear membrane. It is composed of a multigene family of proteins, the lamins, which show a conspicuous cell type-specific expression pattern. The functional role of lamins has not been definitively established but available information indicates that they are involved in the organization of nuclear envelope and interphase chromatin. Spermatogenesis is characterized, among other features, by stage-specific changes in chromatin organization and function. These changes are accompanied by modifications in the organization and composition of the nuclear lamina. In previous experiments we have determined that rat spermatogenic cells express a lamin closely related, if not identical, to lamin B1 of somatic cells; whereas rat somatic lamins A, C, D and E were not detected. Considering that chromatin reorganizations during spermatogenesis may be directly or indirectly related to changes of the nuclear lamina we have decided to further investigate lamin expression during this process. Here we report on the identification of a 52 kDa protein of the rat which, according to immunocytochemical and biochemical data, appears to be a novel nuclear lamin. Using meiotic stage-specific markers, we have also demonstrated that this short lamin is selectively expressed during meiotic stages of spermatogenesis.  相似文献   

9.
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.  相似文献   

10.
M Peter  E Heitlinger  M Hner  U Aebi    E A Nigg 《The EMBO journal》1991,10(6):1535-1544
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. At the onset of mitosis it depolymerizes, presumably in response to phosphorylation of the lamin proteins. Recently, cdc2 kinase, a major regulator of the eukaryotic cell cycle, was shown to induce lamina depolymerization when incubated with isolated nuclei. Here, we have analysed the structural consequences of lamin phosphorylation by cdc2 kinase using lamin head-to-tail polymers reconstituted in vitro from bacterially expressed chicken lamin B2 protein as a substrate. The effects of phosphorylation were monitored by both a pelleting assay and electron microscopy. We show that lamin B2 head-to-tail polymers disassemble in response to phosphorylation of specific sites that are phosphorylated also during mitosis in vivo. These sites are located within SP/TP motifs N- and C-terminal to the central alpha-helical rod domain of lamin proteins. Subsequent dephosphorylation of these sites by purified phosphatase 1 allows reformation of lamin head-to-tail polymers. The relative importance of N- and C-terminal phosphorylation sites for controlling the assembly state of nuclear lamins was assessed by mutational analysis. Polymers formed of lamin proteins carrying mutations in the C-terminal phosphoacceptor motif could still be disassembled by cdc2 kinase. In contrast, a single point mutation in the N-terminal site (Ser16----Ala) rendered head-to-tail polymers resistant to disassembly. These results emphasize the importance of the N-terminal end domain for lamin head-to-tail polymerization in vitro, and they demonstrate that phosphorylation-dephosphorylation is sufficient to control the longitudinal assembly of lamin B2 dimers.  相似文献   

11.
In chicken, three structurally distinct nuclear lamin proteins have been described. According to their migration on two-dimensional gels, these proteins have been designated as lamins A, B1, and B2. To investigate the functional relationship between chicken lamins and their mammalian counterparts, we have examined here the state of individual chicken lamin proteins during mitosis. Current models proposing functional specializations of mammalian lamin subtypes are in fact largely based on the observation that during mitosis mammalian lamin B remains associated with membrane vesicles, whereas lamins A and C become freely soluble. Cell fractionation experiments combined with immunoblotting show that during mitosis both chicken lamins B1 and B2 remain associated with membranes, whereas lamin A exists in a soluble form. In situ immunoelectron microscopy carried out on mitotic cells also reveals membrane association of lamin B2, whereas the distribution of lamin A is random. From these results we conclude that both chicken lamins B1 and B2 may functionally resemble mammalian lamin B. Interestingly, immunolabeling of mitotic cells revealed an association of lamin B2 with extended membrane cisternae that resembled elements of the endoplasmic reticulum. Quantitatively, we found that all large endoplasmic reticulum-like membranes present in metaphase cells were decorated with lamin B2-specific antibodies. Given that labeling of these mitotic membranes was lower than labeling of interphase nuclear envelopes, it appears likely that during mitotic disassembly and reassembly of the nuclear envelope lamin B2 may reversibly distribute between the inner nuclear membrane and the endoplasmic reticulum.  相似文献   

12.
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.  相似文献   

13.
The nuclear lamina is the karyoskeletal structure, intimately associated with the nuclear envelope, that is widespread among the diverse types of eukaryotic cells. A family of proteins, termed lamins, has been shown to be a prominent component of this lamina, and various members of this family are differentially expressed in different cell types. In mammals, three major lamins (A, B, C) have been identified, and in all cells so far examined lamin B is constitutively expressed while lamins A and C are not, suggesting that lamin B is sufficient to form a functional lamina. Because of this key importance of lamin B, cDNA clones encoding mammalian lamin B were isolated by screening murine cDNA libraries, representing F9 teratocarcinoma cells and fetal liver, with the corresponding cDNA probe of lamin LI of Xenopus laevis. The nucleotide sequence of the murine lamin B mRNA (approximately 2.9 kb) was determined. The deduced amino acid sequence of the encoded polypeptide (587 amino acids; mol. wt. 66760) is highly homologous to X. laevis lamin LI (72.9% identical residues) but displays lower similarity to A-type lamins (53.8% identical amino acid residues with human lamin A). Lamin B also conforms to the general molecular organization principle of the members of the intermediate filament (IF) protein family, i.e., an extended alpha-helical rod domain that is interrupted by two non alpha-helical linkers and flanked by non-alpha-helical head (amino-terminal) and tail (carboxy-terminal) domains. The tail domain, which does not reveal a hydrophobic region of considerable length, contains a typical karyophilic signal sequence and an uninterrupted stretch of eight negatively charged amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.  相似文献   

15.
Lamin A, lamin B, and lamin B receptor analogues in yeast   总被引:16,自引:4,他引:12       下载免费PDF全文
Previous studies have shown that turkey erythrocyte lamin B is anchored to the nuclear envelope via a 58-kD integral membrane protein termed p58 or lamin B receptor (Worman H. J., J. Yuan, G. Blobel, and S. D. Georgatos. 1988. Proc. Natl. Acad. Sci. USA. 85:8531-8534). We now identify a p58 analogue in the yeast Saccharomyces cerevisiae. Turkey erythrocyte lamin B binds to yeast urea-extracted nuclear envelopes with high affinity, associating predominantly with a 58-kD polypeptide. This yeast polypeptide is recognized by polyclonal antibodies against turkey p58, partitions entirely with the nuclear fraction, remains membrane bound after urea extraction of the nuclear envelopes, and is structurally similar to turkey p58 by peptide mapping criteria. Using polyclonal antibodies against turkey erythrocyte lamins A and B, we also identify two yeast lamin forms. The yeast lamin B analogue has a molecular mass of 66 kD and is structurally related to erythrocyte lamin B. Moreover, the yeast lamin B analogue partitions exclusively with the nuclear envelope fraction, is quantitatively removed from the envelopes by urea extraction, and binds to turkey lamin A and vimentin. As many higher eukaryotic lamin B forms, the yeast analogue is chemically heterogeneous comprising two serologically related species with different charge characteristics. Antibodies against turkey lamin A detect a 74-kD yeast protein, slightly larger than the turkey lamin A. It is more abundant than the yeast lamin B analogue and partitions between a soluble cytoplasmic fraction and a nuclear envelope fraction. The yeast lamin A analogue can be extracted from the nuclear envelope by urea, shows structural similarity to turkey and rat lamin A, and binds to isolated turkey lamin B. These data indicate that analogues of typical nuclear lamina components (lamins A and B, as well as lamin B receptor) are present in yeast and behave as their vertebrate counterparts.  相似文献   

16.
17.
R Heald  F McKeon 《Cell》1990,61(4):579-589
The nuclear envelope is a dynamic structure that completely disassembles in response to MPF/cdc2 activity in mitosis. A key feature of this process is the hyperphosphorylation of the major structural proteins of the envelope, the nuclear lamins A, B, and C. Two highly conserved serine residues of the lamin protein (Ser-22 and Ser-392 of lamins A and C) are symmetrically positioned 5 amino acids from the ends of the large alpha-helical domain and are shown in the accompanying paper by Ward and Kirschner to be among four sites phosphorylated during nuclear envelope breakdown. Mutations in Ser-22 and Ser-392 that prevent phosphorylation at these sites block the disassembly of the nuclear lamina during mitosis. We propose a model for the regulation of lamin assembly in which phosphorylation just outside the ends of the alpha-helical domain controls the assembly dynamics of the lamin coiled-coil dimers.  相似文献   

18.
The nuclear lamina is a fibrous structure that lies at the interface between the nuclear envelope and the nucleoplasm. The major proteins comprising the lamina, the nuclear lamins, are also found in foci in the nucleoplasm, distinct from the peripheral lamina. The nuclear lamins have been associated with a number of processes in the nucleus, including DNA replication. To further characterize the specific role of lamins in DNA replication, we have used a truncated human lamin as a dominant negative mutant to perturb lamin organization. This protein disrupts the lamin organization of nuclei when microinjected into mammalian cells and also disrupts the lamin organization of in vitro assembled nuclei when added to Xenopus laevis interphase egg extracts. In both cases, the lamina appears to be completely absent, and instead the endogenous lamins and the mutant lamin protein are found in nucleoplasmic aggregates. Coincident with the disruption of lamin organization, there is a dramatic reduction in DNA replication. As a consequence of this disruption, the distributions of PCNA and the large subunit of the RFC complex, proteins required for the elongation phase of DNA replication, are altered such that they are found within the intranucleoplasmic lamin aggregates. In contrast, the distribution of XMCM3, XORC2, and DNA polymerase α, proteins required for the initiation stage of DNA replication, remains unaltered. The data presented demonstrate that the nuclear lamins may be required for the elongation phase of DNA replication.  相似文献   

19.
《The Journal of cell biology》1993,120(6):1293-1304
The nuclear lamina is a karyoskeletal structure at the nucleoplasmic surface of the inner nuclear membrane. Its assembly state is regulated by phosphorylation of the intermediate filament type lamin proteins. Strong evidence has been obtained for a causal link between phosphorylation of lamins by the p34cdc2 protein kinase and disassembly of the nuclear lamina during mitosis. In contrast, no information is currently available on the role of lamin phosphorylation during interphase of the cell cycle. Here, we have identified four protein kinase C phosphorylation sites in purified chicken lamin B2 as serines 400, 404, 410, and 411. In vivo, the tryptic peptide containing serines 400 and 404 is phosphorylated throughout interphase, whereas serines 410 and 411 become phosphorylated specifically in response to activation of protein kinase C by phorbol ester. Prompted by the close proximity of serines 410/411 to the nuclear localization signal of lamin B2, we have studied the influence of phosphorylation of these residues on nuclear transport. Using an in vitro assay, we show that phosphorylation of lamin B2 by protein kinase C strongly inhibits transport to the nucleus. Moreover, phorbol ester treatment of intact cells leads to a substantial reduction of the rate of nuclear import of newly synthesized lamin B2 in vivo. These findings have implications for the dynamic structure of the nuclear lamina, and they suggest that the modulation of nuclear transport rates by cytoplasmic phosphorylation may represent a general mechanism for regulating nuclear activities.  相似文献   

20.
Direct interaction between emerin and lamin A   总被引:11,自引:0,他引:11  
Emerin is the protein of the inner nuclear membrane that is affected by mutation in X-linked Emery-Dreifuss muscular dystrophy. The autosomal dominant form of the disease is caused by mutations in the lamin A/C gene. Several lines of circumstantial evidence have suggested an interaction of emerin with lamins in the nuclear lamina but direct interaction between the two proteins has not yet been demonstrated. We now demonstrate direct interaction between recombinant emerin and lamin A molecules using biomolecular interaction analysis (BIA) and monoclonal antibodies. An emerin-lamin A interaction system may be related in function to the LAP2-lamin B system at the inner nuclear rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号