首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sertoli cells have long been considered to be involved in the regulation of the immune response in the testis. More recently, the Fas system has been implicated in the maintenance of the immune privilege in the testis as well as in the regulation of germ cell apoptosis. However, the control of Fas and Fas ligand (FasL) expression in the testis remains unknown. In the present study, we demonstrate that cultured mouse Sertoli cells constitutively express a low level of membrane-bound Fas protein, but not a soluble form of Fas. Sertoli cells stimulated with TNF-alpha and IFN-gamma markedly increase the expression of both soluble and membrane-bound Fas in a dose-dependent manner. The up-regulated membrane-bound Fas protein is functionally active because it induces a significant level of Sertoli cell death in the presence of Neuro-2a FasL+ effector cells. Interestingly, the soluble form of Fas, which is induced by the same cytokines but has an antiapoptotic effect, is also functional. In fact, conditioned media from TNF-alpha-stimulated Sertoli cell cultures inhibit Neuro-2a FasL+-induced cell death. Taken together, our data suggest a possible regulatory role of TNF-alpha and IFN-gamma on Fas-mediated apoptosis in the testis through disruption of the balance between different forms of Fas.  相似文献   

3.
One proposed mechanism of tumour escape from immune surveillance is tumour up-regulation of the cell surface ligand FasL, which can lead to apoptosis of Fas receptor (Fas) positive lymphocytes. Based upon this 'counterattack', we have developed a mathematical model involving tumour cell-lymphocyte interaction, cell surface expression of Fas/FasL, and their secreted soluble forms. The model predicts that (a) the production of soluble forms of Fas and FasL will lead to the down-regulation of the immune response; (b) matrix metalloproteinase (MMP) inactivation should lead to increased membrane FasL and result in a higher rate of Fas-mediated apoptosis for lymphocytes than for tumour cells. Recent studies on cancer patients lend support for these predictions. The clinical implications are two-fold. Firstly, the use of broad spectrum MMP inhibitors as anti-angiogenic agents may be compromised by their adverse effect on tumour FasL up-regulation. Also, Fas/FasL interactions may have an impact on the outcome of numerous ongoing immunotherapeutic trials since the final common pathway of all these approaches is the transduction of death signals within the tumour cell.  相似文献   

4.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

5.
Fas (Apo-1/CD95) is a cell-surface protein that is responsible for initiating a cascade of proteases (caspases) culminating in apoptotic cell death in a variety of cell types. The function of the Fas/FasL system in the dampening of immune responses to infectious agents through the autocrine deletion of activated T cells has been well documented. More recently, it has been proposed that tumor cells express FasL, presumably to avoid immune detection. In this review, we focus on the role of the interaction of Fas and FasL in the modulation of antitumor responses. We critically examine the evidence that FasL is expressed by tumor cells and explore alternative explanations for the observed phenomena in vitro and in vivo. By reviewing data that we have generated in our laboratory as well as reports from the literature, we will argue that the Fas/FasL system is a generalized mechanism used in an autocrine fashion to regulate cell survival and expansion in response to environmental and cellular cues. We propose that FasL expression by tumor cells, when present, is indicative of a perturbed balance in the control of proliferation while “immune privilege” is established by “suicide” of activated antitumor T cells, a form of activation-induced cell death. Received: 5 May 1998 / Accepted: 20 May 1998  相似文献   

6.
Fas/FasL与消化道肿瘤的相关性   总被引:2,自引:0,他引:2  
Fas,FasL均是细胞表面受体。正常情况下,Fas分子主要分布于人体各个组织器官及病变细胞表面,FasL广泛分布于活化的T细胞等免疫细胞表面。Fas与FasL的结合可导致表达Fas的细胞凋亡,平衡机体免疫反应。当机体发生肿瘤时,肿瘤细胞表面Fas表达下调,有时甚至出现FasL的表达,不但削弱了Fas阳性淋巴细胞的攻击能力,而且赋予了肿瘤细胞杀伤免疫细胞的能力,即肿瘤免疫逃逸的新机制—Fas反击。就这一新机制与消化道肿瘤尤其胃部肿瘤的相关性做一综述。  相似文献   

7.
A Kaser  S Nagata  H Tilg 《Cytokine》1999,11(10):736-743
Interferon alpha (IFN-alpha) plays a prominent role in the therapy of a variety of diseases. The Fas/FasL system is crucial for the cytotoxic function and the peripheral elimination of activated T lymphocytes (ATC) by a mechanism referred to as activation-induced cell death (AICD). Recent studies suggest a link between IFN-alpha, the 2', 5'- oligoadenylate system and apoptosis. We therefore asked whether IFN-alpha is able to regulate the Fas/FasL pathway and thereby affects AICD. Peripheral blood mononuclear cells (PBMC), purified T cells and ATC of healthy volunteers were stimulated with various agents and the influence of IFN-alpha on Fas/FasL was assessed by mRNA and protein studies. The proportion of ATC undergoing AICD or anti-Fas-induced apoptosis was determined by FITC-annexin V staining and propidium iodide uptake. IFN-alpha upregulated mRNA expression of Fas and FasL in activated PBMC. Furthermore the concentration of the soluble form of FasL (sFasL) was increased in PBMC and T cells co-stimulated with IFN-alpha and various agents, whereas Fas surface expression was enhanced by IFN-alpha alone. IFN-alpha enhanced apoptosis induced by anti-Fas antibody and augmented AICD via the Fas/FasL pathway. IFN-alpha-regulated AICD may contribute to lymphopenia observed during IFN-alpha therapy. Our data further support that IFN-alpha is a multifunctional cytokine with profound effects on the immune cascades.  相似文献   

8.
The control of B cell expansion has been thought to be solely regulated by T lymphocytes. We show in this study that Trypanosoma cruzi infection induces up-regulation of both Fas and Fas ligand (FasL) molecules on B cells and renders them susceptible to B cell-B cell killing (referred to as fratricide throughout this paper) mediated via Fas/FasL. Moreover, by in vivo administration of anti-FasL blocking mAb we demonstrate that Fas-mediated B cell apoptosis is an ongoing process during this parasitic infection. We also provide evidence that B cells that have switched to IgG isotype are the preferential targets of B cell fratricide. More strikingly, this death pathway selectively affects IgG(+) B cells reactive to parasite but not self Ags. Parasite-specific but not self-reactive B cells triggered during this response are rescued after either in vitro or in vivo FasL blockade. Fratricide among parasite-specific IgG(+) B lymphocytes could impair the immune control of T. cruzi and possibly other chronic protozoan parasites. Our results raise the possibility that the blockade of Fas/FasL interaction in the B cell compartment of T. cruzi-infected mice may provide a means for enhancing antiparasitic humoral immune response without affecting host tolerance.  相似文献   

9.
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.  相似文献   

10.
Electroporation is a method for introducing DNA into cells by using a high-voltage electric field. This method is very simple and easily manipulated. We describe here a method for the modification of tumor cells with the Fas/Apo-1 (CD95) antigen-gene and Fas ligand (FasL)-gene transfection through the use of electroporation, and suggest that the Fas-FasL system is a good target for the induction of apoptosis-mediated antitumor activity. The Fas receptor/ligand system induces apoptosis and plays an important role in regulation of the immune system. In the method described, hepatoma MH134 (Fas and FasL) is transfected with murine Fas and FasL cDNA. A single administration of monoclonal anti-Fas antibody efficiently suppresses the growth of F6b (MH134+Neo+Fas) tumors but not that of N1d (MH134+Neo) tumors in gld/gld lpr/lpr mice. MH134+Neo+FasL tumor cells were rejected after the induction of inflammation with infiltration of neutrophils in mice. These results suggest that electroporation and Fas-mediated apoptosis are a good method for inducing of antitumor activity.  相似文献   

11.
The membrane-bound form of Fas ligand (FasL) signals apoptosis in target cells through engagement of the death receptor Fas, whereas the proteolytically processed, soluble form of FasL does not induce cell death. However, soluble FasL can be rendered active upon cross-linking. Since the minimal extent of oligomerization of FasL that exerts cytotoxicity is unknown, we engineered hexameric proteins containing two trimers of FasL within the same molecule. This was achieved by fusing FasL to the Fc portion of immunoglobulin G1 or to the collagen domain of ACRP30/adiponectin. Trimeric FasL and hexameric FasL both bound to Fas, but only the hexameric forms were highly cytotoxic and competent to signal apoptosis via formation of a death-inducing signaling complex. Three sequential early events in Fas-mediated apoptosis could be dissected, namely, receptor binding, receptor activation, and recruitment of intracellular signaling molecules, each of which occurred independently of the subsequent one. These results demonstrate that the limited oligomerization of FasL, and most likely of some other tumor necrosis factor family ligands such as CD40L, is required for triggering of the signaling pathways.  相似文献   

12.
During neoplastic growth and metastasis, the immune system responds to the tumor by developing both cellular and humoral immune responses. In spite of this active response, tumor cells escape immune surveillance. We previously showed that FasL expression by breast tumor plays a central role in the induction of apoptosis of infiltrating Fas-immune cells providing the mechanism for tumor immune privilege. In the present study, we showed that FasL in breast tissue is functionally active, and estrogen and tamoxifen regulate its expression. We identified an estrogen recognizing element like-motif in the promoter region of the FasL gene, suggesting direct estrogen effects on FasL expression. This was confirmed by an increase in FasL expression in both RNA and protein levels in hormone sensitive breast cancer cells treated with estradiol. This effect is receptor mediated since tamoxifen blocked the estrogenic effect. Interestingly, tamoxifen also inhibited FasL expression in estrogen-depleted conditions. Moreover, an increase in FasL in breast cancer cells induces apoptosis in Fas bearing T cells and, tamoxifen blocks the induction of apoptosis. These studies provide evidence that tamoxifen inhibits FasL expression, allowing the killing of cancer cells by activated lymphocytes. This partially explains the protective effect of tamoxifen against breast cancer.  相似文献   

13.
刘存  董金波 《生物磁学》2009,(13):2581-2583
类风湿关节炎是机体对自身滑膜发生免疫反应的疾病,其主要病理特征是滑膜增生和多种炎症细胞的浸润。滑膜增生的有关机制仍不清楚,目前认为可能是滑膜细胞和炎症浸润细胞数量增加及凋亡相对减少,即细胞凋亡程度不及增殖程度所致。Fas/FasL系统是细胞凋亡的重要途径之一,通过影响滑膜细胞的Fas/FasL表达可以诱导其凋亡。本文对Fas/FasL的性质、结构、功能、Fas/FasL与RA发病机制及RA治疗的关系进行综述。  相似文献   

14.
Apoptosis (programmed cell death) has been shown to play a major role in development and in the pathogenesis of numerous diseases. A principal mechanism of apoptosis is molecular interaction between surface molecules known as the "death receptors" and their ligands. Perhaps the best-studied death receptor and ligand system is the Fas/Fas ligand (FasL) system, in which FasL, a member of the tumor necrosis factor (TNF) family of death-inducing ligands, signals death through the death receptor Fas, thereby resulting in the apoptotic death of the cell. Numerous cells in the liver and gastrointestinal tract have been shown to express Fas/FasL, and there is a growing body of evidence that the Fas/FasL system plays a major role in the pathogenesis of many liver and gastrointestinal diseases, such as inflammatory bowel disease, graft vs. host disease, and hepatitis. Here we review the Fas/FasL system and the evidence that it is involved in the pathogenesis of liver and gastrointestinal diseases.  相似文献   

15.
16.
Although cisplatin derivatives are first line chemotherapeutic agents for the treatment of ovarian epithelial cancer, chemoresistance is a major therapeutic problem. Although the cytotoxic effect of these agents are believed to be mediated through the induction of apoptosis, the role of the Fas/FasL system in chemoresistance in human ovarian epithelial cancer is not fully understood. In the present study, we have used cultures of established cell lines of cisplatin-sensitive human ovarian epithelial tumours (OV2008 and A2780-s) and their resistant variants (C13* and A2780-cp, respectively) to assess the role ofFas/FasL system in the chemo-responsiveness of ovarian cancer cells to cisplatin. Cisplatin was effective in inducing the expression of cell-associated Fas and FasL, soluble FasL and apoptosis in concentration and time-dependent fashion in both cisplatin-sensitive cell lines (OV2008 and A2780-s). In contrast, while cisplatin was effective in increasing cell-associated Fas protein content in C13*, it failed to up-regulate FasL (cell-associated and soluble forms) and induce apoptosis, irrespective of concentration and duration of cisplatin treatment. Concentrated spent media from OV2008 cultures after cisplatin treatment were effective in inducing apoptosis in C13* cells which was partly inhibited by the antagonistic Fas monoclonal antibody (mAb) suggesting that the soluble FasL present in the spent media was biologically active. In the resistant A2780-cp cells, neither Fas nor FasL up-regulation were evident in the presence of the chemotherapeutic agent and apoptosis remained low compared to its sensitive counterpart. Activation of the Fas signalling pathway, by addition to the cultures an agonistic Fas mAb, was equally effective in inducing apoptosis in the cisplatin-sensitive (OV2008) and -resistant variant C13*, although these responses were of lower magnitude compared to that observed with cisplatin in the chemosensitive cells. A significant interaction between cisplatin and agonistic Fas mAb was observed in the apoptotic response in OV2008 and C13* when cultured in the presence of both agents. Immunohistochemistry of human ovarian epithelial carcinomas reveals the presence of Fas in low abundance in proliferatively active cells but in high levels in quiescent ones. Although the expression pattern of FasL in the tumour was similar to that of Fas, the protein content was considerably lower. Taken together, these data suggest that the dysregulation of the Fas/FasL system may be an important determinant in cisplatin resistance in ovarian epithelial cancer cells. Our results are also supportive of the notion that combined immuno- and chemo-therapy (i.e., agonistic Fas mAb plus cisplatin) may provide added benefits in the treatment of both chemo-sensitive and -resistant ovarian tumours.  相似文献   

17.
Chang YC  Xu YH 《Cell research》2000,10(3):233-242
Apoptosis plays an important role in embryonic development,tissue remodeling,immune regulation and tumor regression.Two groups of molecules(Bcl-2 family and “Death factor” family) are involved in regulating apoptosis.In order to know about the effect of Bcl-2 on apoptosis induced by Fas,a typical member of “Death factor” family,the transfection experiments with expression vectors pcDNA3-fl and pcDNA3-bcl-2 were performed in BEL-7404 cells,a human hepatocellular carcinoma cell line which expresses endogenous Fas,but not FasL and Bcl-2.The data showed that the expression of FasL in pcDNA3-fl transfected hepatoma cells obviously induced the apoptosis of the cells.However,the overexpression of Bcl-2 in pcDNA3-bcl-2 transfected 7404/b-16 cells counteracted pcDNA3-fl transient transfection mediated apoptosis.Further study by cotransfection experiments indicated that Bid but not Bax (both were pro-apoptotic proteins of Bcl-2 family) blocked the inhibitory effect of Bcl-2 on Fas-mediated apoptosis.These results suggested that Fas-mediated apoptosis in human hepatoma cells is possibly regulated by Bcl-2 family proteins via mitochondria pathway.  相似文献   

18.
The Fas ligand (FasL)/Fas receptor (CD95) pathway is an important mediator of apoptosis in the immune system and can also mediate cancer cell death. Soluble FasL (sFasL), shed from the membrane-bound form of the molecule by a putative metalloproteinase (MP), may function to locally regulate the activity of membrane-bound FasL. Using a replication-defective recombinant adenovirus-expressing FasL (RAdFasL), we identified a variable ability of different carcinoma cells to respond to FasL-induced cytotoxicity and to shed sFasL. Blockade of FasL cleavage with an MP inhibitor significantly enhanced RAdFasL-induced apoptosis suggesting that sFasL may antagonize the effect of membrane-bound FasL. In support of this concept, a recombinant adenovirus expressing a noncleavable form of FasL (RAdD4) was found to be a potent inducer of apoptosis even at very low virus doses. Our results highlight the therapeutic potential of noncleavable FasL as an antitumor agent and emphasize the important role of MP via the production of sFasL in regulating the response of the Fas pathway. Moreover, these findings have general implications for the therapeutic exploitation of TNF family ligands and for the possible impact of MP-based therapies on the normal physiology of Fas/TNF pathways.  相似文献   

19.
Expression and activity of the Fas antigen in bovine ovarian follicle cells   总被引:5,自引:0,他引:5  
The Fas antigen is a cell surface receptor that triggers apoptosis when bound to Fas ligand (FasL). Studies were undertaken to determine whether the cow provides a suitable model to study the role of the Fas pathway in inducing apoptosis of ovarian cells during follicular atresia. Expression of Fas antigen mRNA and responsiveness to FasL-induced killing in vitro were measured. Effects of the cytokines tumor necrosis factor (TNF)-alpha and interferon-gamma (IFN) were studied because of previous demonstrations of their role in Fas-mediated apoptosis in other cell types. Fas antigen mRNA was detectable in cultured granulosa and theca cells, and expression was increased by treatment with IFN but not TNF. Granulosa and theca cells were resistant to FasL-induced killing unless pretreated with IFN. TNF had no effect on FasL-induced killing. Granulosa and theca cell cultures in which killing occurred in response to FasL stained positively for annexin V, an early marker for cells undergoing apoptosis. These results provide a basis for further studies using the bovine ovary to examine the role of the Fas antigen in follicular atresia.  相似文献   

20.
目的探讨Fas/FasL(Fas配体)在原发性肝细胞肝癌(HCC)组织中的表达及其与乙肝病毒(HBV)感染的关系。方法用免疫组化S-P法检测21例肝癌组织及其10例癌旁组织Fas/FasL的表达。结果在肝癌和癌旁组织中Fas表达的阳性率分别为52.38%和80.00%(P〈0.05),FasL分别为66.67%和40.00%(P〈0.05)。在HBsAg阳性和阴性组Fas表达的阳性率分别为50.00%和66.67%(P〉0.05);FasL分别为61.11%和100%(P〈0.05)。肝癌组织中Fas、FasL表达与性别、年龄、肿瘤大小无关,与癌栓转移呈负相关,FasL与分化程度有关。结论肝癌细胞能下调Fas及上调FasL的表达而使凋亡受阻,HBV感染能抑制肝癌组织FasL的表达,可能是HBV在HCC的发牛及发展讨稃中的致痛机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号