首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ladas  N.P.  Papageorgiou  G.C. 《Photosynthetica》2000,38(3):343-348

We investigated the factors that impose an upper limit of salinity tolerance to the unicellular freshwater cyanobacterium Synechococcus sp. PCC 7942. Above approx. 0.4 M NaCl, Synechococcus cells cease to proliferate, after having accumulated 0.3 M sucrose. Cells that pre-accumulated sucrose could tolerate up to 0.5 M NaCl, but not 0.6 M NaCl. After exposure to 0.5 M NaCl or higher, the cells were irreversibly modified becoming unable for osmotic volume adjustments.

  相似文献   

2.
We employed chlorophyll a fluorometry in order to measure the evolution of turgor threshold (intracellular osmolality) during the adaptation of two genetic transformants of the freshwater cyanobacterium Synechococcus sp. PCC7942 to unfavorable external salinity: PAMCOD cells which oxidize imported choline and accumulate approx. 0.06–0.08 M glycine betaine; and PAM cells which do not oxidize choline [Deshnium et al. (1995a) Plant Mol Biol 29: 897–909]. Turgor thresholds increased linearly (a) with the NaCl concentration in the culture, and (b) with the molar sucrose/chlorophyll a ratio in the cell. PAMCOD cells could proliferate in culture medium containing 0.4 M NaCl (external osmolality, 0.815 Osm kg−1), after a lag period, during which intracellular sucrose rose to 10 mol (mol Chl a)−1, or more, and turgor threshold (cytoplasmic osmolality) exceeded 1 Osm kg−1. At comparative conditions, PAM cells accumulated approx. half as much sucrose, and attained approx. half as high turgor thresholds as the PAMCOD cells, but they did not proliferate. These results indicate that glycine betaine improved the salinity tolerance of the PAMCOD cells synergistically, by means of two effects that implicate sucrose, the main organic osmolyte of Synechocccus: enhancement of sucrose biosynthesis, and/or alleviation of sucrose toxicity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Abstract Changes in cell volume and solute content upon hyperosmotic shock have been studied for six unicellular blue-green algae (cyanobacteria): Synechococcus PCC 6301, PCC 6311; Synechocystis PCC 6702, PCC 6714, PCC 6803 and PCC 7008. The extent of change in volume was shown to be dependent upon the solute used to establish the osmotic gradient, with cells in NaCl showing a reduced shrinkage when compared to cells in media containing added sorbitol and sucrose. Uptake of extracellular solutes during hyperosmotic shock was observed in Synechocystis PCC 6714, with maximum accumulation of external solutes in NaCl and minimum solute uptake in sucrose solutions. Conversely, solute loss from the cells (K+ and amino acids) was greatest in sucrose-containing media and least in NaCl. The results show that these blue-green algae do not behave as ‘ideal osmometers’ in media of high osmotic strength. It is proposed that short-term changes in plasmalemma permeability in these organisms may be due to transient membrane instability resulting from osmotic imbalance between the cell and its surrounding fluid at the onset of hyperosmotic shock.  相似文献   

4.
The mechanisms of salt adaptation were studied in the cyanobacterium Synechococcus 6311. Intracellular volumes and ion concentrations were measured before and after abrupt increases of external NaCl concentrations up to 0.6 molar NaCl. Equilibrium volumes, measured with a rapid and accurate electron spin resonance spin probe method, showed that at low NaCl concentrations the cells did not shrink as expected for an impermeable solute. However, when the NaCl concentration exceeded a critical value, volume losses occurred. These losses were not fully reversed by hypoosmotic treatment, suggesting membrane damage. The critical value of irreversible volume loss paralleled the increase in salinity during cell growth. Rapid mixing experiments showed that exposure of Synechococcus 6311 to non-damaging NaCl concentrations caused water extrusion from the cells; the volume decreases were time resolved to about 200 milliseconds. Subsequently, volumes increased rapidly as NaCl moved into the cells. Controls recovered their volumes within 15 seconds, while salt-adapted cells grown at 0.6 molar NaCl required 1 minute for volume equilibration. This decrease in the rate of cell volume recovery indicates that salt adaptation is accompanied by changes in cell membrane properties. Subsequent to these initial rapid volume changes, a more gradual sequence of ion movement and sugar accumulation was observed. Under conditions for photoautotrophic growth, significant Na+ extrusion was observed 30 min after salt shock. Sucrose accumulation reached a maximum value after 16 hours and K+ accumulation reached equilibrium after 40 hours. The final concentrations of K+ and Na+ and sucrose and glucose inside the 0.6 molar NaCl-grown cells indicate that the inorganic ions and organic `compatible' solutes are the major osmotic species which account for the adaptation of Synechococcus 6311 to salt.  相似文献   

5.
The bactericidal effect of hydrostatic pressure is reduced when bacteria are suspended in media with high osmolarity. To elucidate mechanisms responsible for the baroprotective effect of ionic and nonionic solutes, Lactococcus lactis was treated with pressures ranging from 200 to 600 MPa in a low-osmolarity buffer or with buffer containing 0.5 M sucrose or 4 M NaCl. Pressure-treated cells were characterized in order to determine viability, the transmembrane difference in pH (ΔpH), and multiple-drug-resistance (MDR) transport activity. Furthermore, pressure effects on the intracellular pH and the fluidity of the membrane were determined during pressure treatment. In the presence of external sucrose and NaCl, high intracellular levels of sucrose and lactose, respectively, were accumulated by L. lactis; 4 M NaCl and, to a lesser extent, 0.5 M sucrose provided protection against pressure-induced cell death. The transmembrane ΔpH was reversibly dissipated during pressure treatment in any buffer system. Sucrose but not NaCl prevented the irreversible inactivation of enzymes involved in pH homeostasis and MDR transport activity. In the presence 0.5 M sucrose or 4 M NaCl, the fluidity of the cytoplasmic membrane was maintained even at low temperatures and high pressure. These results indicate that disaccharides protect microorganisms against pressure-induced inactivation of vital cellular components. The protective effect of ionic solutes relies on the intracellular accumulation of compatible solutes as a response to the osmotic stress. Thus, ionic solutes provide only asymmetric protection, and baroprotection with ionic solutes requires higher concentrations of the osmolytes than of disaccharides.  相似文献   

6.
The1H-NMR analysis of methanol extracts of halophilic and halotolerant alkaliphilic methanotrophs isolated from the soda lakes of Southern Transbaikal and Tuva showed that bacterial cells grown at an optimum salinity accumulated mainly sucrose and 5-oxo-1-proline, whereas cells adapted to 0.5–1.0 M NaCl additionally synthesized ectoine. A more detailed study showed that nitrogen deficiency in the growth medium ofMethylobacter alcaliphilus 20Z decreased the synthesis of nitrogen-contaihing osmoprotectants, ectoine and 5-oxo-1-proline.M. alcaliphilus 20Z cells exhibited activities of UDP-glucose pyrophosphorylase and sucrose-phosphate synthase involved in sucrose synthesis. Glutamine synthetase in vitro did not require NH 4 + ions, which implies that this enzyme is involved in 5-oxo-1-proline synthesis. Cells grown at high salinity exhibited elevated levels of aspartate kinase, aspartate-semialdehyde dehydrogenase, and ectoine synthase. This suggests that ectoine is synthesized via aspartate and aspartate-semialdehyde, i.e., via the route earlier established for extremely halophilic bacteria.  相似文献   

7.
Nejad  Mohssen S. 《Chemical senses》1986,11(3):283-293
A comparison of the integrated responses of the rat's greatersuperficial petrosal (GSP) and chorda tympani (CT) nerves toa number of taste stimuli was studied. The GSP nerve of therat was very responsive to the chemical stimulation of the oralcavity. Among the selected stimuli related to the four basictaste qualities, 0.5 M sucrose produced the greatest neuralresponse in the GSP nerve, whereas, 0.1 M NaCl produced thegreatest in the CT nerve. The GSP nerve integrated responseto 0.5 M sucrose solution was approximately three times as greatin magnitude as that to a 0.1 M NaCl solution. The neural responsemagnitude of the GSP and CT nerves were as follows: GSP nerve;0.5 M sucrose >0.02 M Na-saccharin >0.05 M citric acid>0.1 M NaCl > 0.01 M quinine-HCl. CT nerve; 0.1 M NaCl> 0.05 M citric acid > 0.02 M Na-saccharin > 0.01 Mquinine-HCl >0.5 M sucrose. The response magnitudes of theGSP nerve to 0.3 M chloride salt solutions were: LiCl > CaCl2> NaCl > NH4Cl > KCl, whereas the response magnitudesof the CT nerve to the above salts were: LiCl > NaCl >NH4Cl > CaCl2 > KCl. All 0.5 M solutions of the selectedsugars (sucrose, rhamnose, galactose, lactose, fructose, -methyl-D-glucoside,xylose, mannose, arabinose, maltose, sorbose and glucose) evokedneural responses in both GSP and CT nerves. The order of theresponse magnitudes of the GSP nerve to the selected sugarswas similar to that of the CT nerve but the absolute magnitudesof the GSP nerve were greater.  相似文献   

8.
Summary The proboscis extension reponse of the blowfly during stimulation of the tarsal sugar receptors was inhibited by the presence of NaCl. Acceptance thresholds for sucrose in various concentrations of NaCl were measured. The median acceptance thresholds for sucrose in mixtures of 0.01, 0.25, 0.5 and 1.0 M NaCl were 1.8 × 10–3, 6.0 × 10–3, 1.2 × 10–2, and 2.0 × 10–2 M, respectively. Concentration-response curves for sucrose in the tarsal D-type sugar receptor shifted to the right under the existence of high concentration of NaCl. Number of impulses per D-type sugar receptor at the median acceptance thresholds described above were 7.5, 8.4, 6.8 and 10.4 for the first 0.1 s of stimulation, respectively. The average number was 8.2 impulses per 0.1 s. Comparisons were made between the behavioral acceptance thresholds (1) on one leg exposed to sucrose mixed with 0.01 M NaCl and (2) on two contralateral legs, one of which was exposed to sucrose in 0.01 M NaCl and the other to 0.5 M NaCl alone. The acceptance thresholds from two experiments agreed with each other. The median threshold value was 1.7 × 10–2 M sucrose. Behavioral inhibition by NaCl in mixtures with sucrose can be explained by its peripheral inhibition of sugar receptors.This research was supported in part by ITO foundation and Scientific Research Fund from the Ministry of Education of Japan.  相似文献   

9.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

10.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

11.
The effects of the energization of cells by light and by exogenous glucose on the salt-induced inactivation of the photosynthetic machinery were investigated in the cyanobacterium Synechococcus sp. PCC 7942. The incubation of the cyanobacterial cells in a medium supplemented with 0.5 M NaCl induced a rapid decline with a subsequent slow decline, in the oxygen-evolving activity of Photosystem (PS) II and in the electron-transport activity of PSI. Light and exogenous glucose each protected PSII and PSI against the second phase of the NaCl-induced inactivation. The protective effects of light and glucose were eliminated by an uncoupler of phosphorylation and by lincomycin, an inhibitor of protein synthesis. Light and glucose had similar effects on the NaCl-induced inactivation of Na+/H+ antiporters. After photosynthetic and Na+/H+-antiport activities had been eliminated by the exposure of cells to 0.5 M NaCl in the darkness, both activities were partially restored by light or exogenous glucose. This recovery was prevented by lincomycin. These observations suggest that cellular energization by either photosynthesis or respiration, which is necessary for protein synthesis, is important for the recovery of the photosynthetic machinery and Na+/H+ antiporters from inactivation by a high level of NaCl.  相似文献   

12.
Active transport of -aminoisobutyric acid (AIB) in Vibrio costicola utilizes a system with affinity for glycine, alanine and, to some extent, methionine. AIB transport was more tolerant of high salt concentrations (3–4 M NaCl) in cells grown in the presence of 1.0 M NaCl than in those grown in the presence of 0.5 M NaCl. The former cells could also maintain much higher ATP contents than the latter in high salt concentrations.Transport kinetic studies performed with bacteria grown in 1.0 M NaCl revealed three effects of the Na+ ion: the first effect is to increase the apparent affinity (K t) of the transport system for AIB at Na+ concentrations <0.2 M, the second to increase the maximum velocity (V max) of transport (Na+ concentrations between 0.2 and 1.0 M), and the third to decrease the V max without affectig K t (Na+ concentrations >1.0 M). Cells grown in the presence of 0.5 M or 1.0 M NaCl had similar affinity for AIV. Thus, the differences in salt response of transport in these cells do not seem due to differences in AIB binding. Large, transport-inhibitory concentrations of NaCl resulted in efflux of AIB from cells preloaded in 0.5 M or 1.0 M NaCl, with most dramatic efflux occurring from the cells whose AIB transport was more salt-sensitive. Our results suggest that the degree to which high salt concentrations affect the transmembrane electrochemical energy source used for transport and ATP synthesis is an important determinant of salt tolerance.Abbreviations AIB -aminoisobutyric acid - pmf proton motive force  相似文献   

13.
We studied the capability of the marine microalga Tetraselmis (Platymonas) viridis to adapt to low and high medium salinity. The normal NaCl concentration for growth of this alga is 0.5 M. It was shown that T. viridis cells could actively grow and maintain osmoregulation and cytoplasmic ion homeostasis in the wide range of external salt concentrations, from 0.01 to 1.2 M NaCl. Using the plasma membrane vesicles isolated from T. viridis cells grown at various NaCl concentrations (0.01, 0.05, 0.5, 0.9, and 1.2 M), we studied the formation of the phosphorylated intermediate of Na+-ATPase, the enzyme responsible for Na+ export from the cells with a mol wt of ca. 100 kD. Na+-ATPase was shown to function in the plasma membrane even in the cells growing at an extremely low NaCl concentration (0.01 M). When alga was grown in high-salt media, the synthesis of several proteins with molecular weights close to 100 kD was induced. The data obtained argue for the hypothesis, which was put forward earlier, that a novel Na+-ATPase isoform is induced by T. viridis growing at high NaCl concentrations.  相似文献   

14.
The amounts of sugar solution consumed by Drosophila melanogaster flies were determined. Starved and desiccated flies of a wild type strain (QA) consume 7?9 × 10?2 λ of a 0.3 M sucrose solution per fly during the first hour and less later. They consume more of the 0.3 M sucrose solution than of the more diluted and the more concentrated solutions. In preference-aversion tests the flies discriminated between water and various sugar solutions, and between different sugar concentrations. Contrary to other fly species these flies did not prefer 0.05 M fructose over 0.05 M glucose. 0.3–0.5 M NaCl added to 0.1 M sucrose turned a preference over 0.01 sucrose into an aversion. A mutant, Lot-94, selected for its increased consumption of a 1 M NaCl solution was found to consume more of all test solutions. The amount of NaCl that had to be added to 0.1 M sucrose to turn the preference over 0.01 M sucrose by the mutant flies into aversion was not different from that found for the wild type flies.  相似文献   

15.
Biosynthesis of glycine betaine from simple carbon sources as compatible solute is rare among aerobic heterotrophic eubacteria, and appears to be almost exclusive to the non-halophilic and slightly halophilic phototrophic cyanobacteria. Although Synechococcus sp. WH8102 (CCMP2370), a unicellular marine cyanobacterium, could grow up to additional 2.5% (w/v) NaCl in SN medium, natural abundance 13C nuclear magnetic resonance spectroscopy identified glycine betaine as its major compatible solute. Intracellular glycine betaine concentrations were dependent on the osmolarity of the growth medium over the range up to additional 2% NaCl in SN medium, increasing from 6.8 ± 1.5 to 62.3 ± 5.5 mg/g dw. The ORFs SYNW1914 and SYNW1913 from Synechococcus sp. WH8102 were found as the homologous genes coding for glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase, heterologously over-expressed respectively as soluble fraction in Escherichia coli BL21(DE3)pLysS and purified by Ni-NTA His•bind resins. Their substrate specificities and the values of the kinetic parameters were determined by TLC and 1H NMR spectroscopy. RT-PCR analysis revealed that the two ORFs were both transcribed in cells of Synechococcus sp. WH8102 growing in SN medium without additional NaCl, which confirmed the pathway of de novo synthesizing betaine from glycine existing in these marine cyanobacteria.  相似文献   

16.
Ectothiorhodospira marismortui, a moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring, contains glycine betaine and N-carbamoyl glutamineamide (CGA) as the main intracellular osmotic solutes, with sucrose as a minor component. The concentration of glycine betaine was found to increase with increasing salt concentration of the medium, from 0.47 M to 1.29 M in cells grown from 0.85 to 2.56 M NaCl, while the estimated CGA concentration rose from about 0.2 M to 0.5 M. The concentration of sucrose remained constant at a value of around 0.05 M. Intracellular sodium and potassium concentrations were relatively low (around 0.5 and 0.3 M, respectively, at an external NaCl concentration of 1.8 M). The concentration of the novel compound N-carbamoyl glutamineamide was enhanced when l-glutamine was added to the growth medium, suggesting that glutamine served as a precursor for the synthesis of the compound.Abbreviations CGA N-carbamoyl glutamineamide  相似文献   

17.
The fatty acid composition of membranes of L-forms ofStreptococcus faecalis andProteus mirabilis cultured at different osmolalities and in different osmotic stabilizers was examined.S. faecalis L-forms cultured with sucrose in the medium showed a decrease in the unsaturated fatty acid C181 and an increase in the C18 fatty acid and C19 cyclopropane fatty acid. Fatty acid composition ofS. faecalis L-forms cultured in medium containing 1.8% NaCl was similar to the fatty acid composition of L-forms cultured in brain-heart infusion broth (BHI) without osmotic stabilizer and was between the composition of fatty acids of L-forms in BHI with sucrose and that in BHI without 0.5 M sucrose. InProteus mirabilis L-forms, there were differences between L-forms cultured with and without sucrose, but these differences were not comparable to the changes observed inS. faecalis L-forms.P. mirabilis L-forms cultured with and without NaCl in the medium had similar fatty acid compositions.  相似文献   

18.
Transgenic suspension cells of Oryza sativa L. cv. Dongjin utilized as a host for producing recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) were preserved in liquid nitrogen (−196 °C) after slow prefreezing in a deep freezer (−70 °C). The development of an optimal procedure for long-term storage was investigated by the addition of various concentrations of cryoprotectant mixture and osmoticum in preculture media before cooling. A pre-deep-freezing time of 120 min was the most effective for maintaining cell viability. Compared with mannitol, sorbitol, trehalose, and NaCl under the same osmotic conditions, 0.5 M sucrose was found to be the best osmoticum for preculture media. The cryoprotectant comprising sucrose, glycerol, and dimethylsulfoxide (DMSO) was applied to the precultured cells, and a combination of 1 M sucrose, 1 M glycerol, and 1 M DMSO provided the best result. The viability with this optimized condition was 88% after cryocell-banking for 1 day. The expression of hCTLA4Ig in recovered callus from cryopreservation was also kept stable, and the production level was similar to that observed in noncryopreserved cultures.  相似文献   

19.
Gustatory sensitivities of the hamster's soft palate   总被引:4,自引:1,他引:3  
The response properties of taste receptors distributed on thesoft palate of the hamster were studied by recording integratedresponses from the greater superficial petrosal (GSP) nerveStimuli were concentration series of sucrose, NaCl, HCl andquinine hydrochloride (QHCl), and several other 0.1 M saltsand 0.5 M sugars. For comparison, integrated responses wererecorded from the chorda tympani (CT) nerve in many of the sameanimals from which recordings were made from the GSP. Responsesin each preparation were scaled relative to the phasic responseto 0.1 M NaCl and were then expressed for each nerve as a proportionof the total response magnitude (TRM)—the sum of all theresponses to the four concentration series. In this way, therelative response of each nerve to all of the stimuli couldbe evaluated. There were significant differences between theGSP and CT nerves in the responses to NaCl, QHCl and sucrose.Both the phasic and tonic responses to sucrose were larger inthe GSP than in the CT, whereas the tonic responses to NaCland QHCl were smaller. The slopes of the concentration-responsefunctions for NaCl, HCl and sucrose were significantly differentbetween the two nerves. The responses to 0.1 M sodium and lithiumsalts were significantly greater in the CT than in the GSP;whereas the 0.5 M sugars elicited responses in the GSP thatwere 2–3 times greater than in the CT nerve. A comparisonof the relative responsiveness to 0.3M sucrose, 0 3 M NaCl,0.01 M QHCl, 0.01 M HCl and distilled water among the GSP, CT,glossopharyngeal (IXth) nerve and superior laryngeal nerve (SLN)indicated that the vast majority of information about sucroseand NaCl is transmitted to the brainstem by the VIIth nerve. 1Present address: Department of Oral Physiology, Kagoshima UniversityDental School, Kagoshima 890, Japan  相似文献   

20.
Glycerol formation ofDunaliella cells in non-growing media was investigated.Dunaliella tertiolecta andD. bioculata grew well in a NaCl medium but not at all in a LiCl or a MgCl2 medium. When the cells originally suspended in a medium containing 0.5 M NaCl were transferred to media which contained one of 1 M NaCl, 1 M LiCl or 0.7 M MgCl2, the intracellular glycerol content increased.D. tertiolecta cultured in either a 1 M LiCl or a 0.7 M MgCl2 medium did not multiply, but maintained abilities to evolve O2 in the light and absorb O2 in thedark even after about a 5 day culture. From these results, it can be concluded that the halotolerance ofDunaliella to different kinds of salts is not directly related to osmoregulation by the glycerol formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号