首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha(2)-macroglobulin (alpha(2)M) and its receptor, low density lipoprotein receptor-related protein (LRP), function together to facilitate the cellular uptake and degradation of beta-amyloid peptide (Abeta). In this study, we demonstrate that Abeta binds selectively to alpha(2)M that has been induced to undergo conformational change by reaction with methylamine. Denatured alpha(2)M subunits, which were immobilized on polyvinylidene difluoride membranes, bound Abeta, suggesting that alpha(2)M tertiary and quaternary structure are not necessary. To determine whether a specific sequence in alpha(2)M is responsible for Abeta binding, we prepared and analyzed defined alpha(2)M fragments and glutathione S-transferase-alpha(2)M peptide fusion proteins. A single sequence, centered at amino acids (aa) 1314-1365, was identified as the only major Abeta-binding site. Importantly, Abeta did not bind to the previously characterized growth factor-binding site (aa 718-734). Although the Abeta binding sequence is adjacent to the binding site for LRP, the results of experiments with mutated fusion proteins indicate that the two sites are distinct. Furthermore, a saturating concentration of Abeta did not inhibit LRP-mediated clearance of alpha(2)M-MA in mice. Using various methods, we determined that the K(D) for the interaction of Abeta with its binding site in the individual alpha(2)M subunit is 0.7-2.4 microm. The capacity of alpha(2)M to bind Abeta and deliver it to LRP may be greater than that predicted by the K(D), because each alpha(2)M subunit may bind Abeta and the bound Abeta may multimerize. These studies suggest a model in which alpha(2)M has three protein interaction sites with distinct specificities, mediating the interaction with Abeta, growth factors, and LRP.  相似文献   

2.
alpha-Macroglobulins derived from plasma or secreted by macrophages are platelet-derived growth factor (PDGF) binding proteins that compete with cell-surface receptors on fibroblasts for PDGF binding. alpha 2-Macroglobulin (alpha 2M) derived from bovine plasma was tested for its ability to modulate the PDGF-induced proliferation of primary passage rat lung fibroblasts (RLFs) and a human skin fibroblast cell line (CRL 1508). Fibroblasts were grown in 10% fetal bovine serum (FBS) for 24 hr, then washed with serum-free medium before adding serum-free defined medium (SFDM) containing insulin and transferrin. To this medium were added varying concentrations of human plasma-derived AB-PDGF and alpha 2 M, alone or in combination. Receptor-recognized alpha 2M was prepared by treatment with methylamine. Both native alpha 2M and the alpha 2M-methylamine (alpha 2M-MA) were tested for growth promoting activity in the absence or presence of PDGF. After 3 days, a concentration-dependent growth curve of fibroblast proliferation was demonstrated for PDGF alone, with near maximal stimulation reached at 15-20 ng/ml PDGF. alpha 2M and alpha 2M-MA alone had no effect on cell proliferation. However, alpha 2M-MA concentrations above 32 micrograms/ml synergistically enhanced PDGF-stimulated proliferation greater than 100% in the presence of 15 ng/ml PDGF. Native alpha 2M enhanced PDGF-stimulated growth 80-100% above PDGF controls only at low concentrations (32-64 micrograms/ml alpha 2M). High concentrations of native alpha 2M (128-256 micrograms/ml) either had no effect on growth or were inhibitory to PDGF-stimulated growth, depending on the cell type tested. Rat lung fibroblasts were shown to secrete a factor(s) that inhibited the trypsin-binding capacity of native alpha 2M. We further demonstrated that early passage RLFs possess specific cell-surface receptors for [125I]-PDGF and [125I]-alpha 2M-MA, and preincubation of RLFs with alpha 2M-MA increased the specific binding of [125I]-PDGF to the cell surface of these fibroblasts. Considered together, these data support the view that receptor-recognized alpha 2M synergistically enhances the proliferative capacity of PDGF. We postulate that receptor-recognized alpha Ms enhance PDGF-stimulated growth by increasing the local concentration of PDGF at the cell surface, where the PDGF could be released in close proximity to its own receptors.  相似文献   

3.
Macromolecules that bind beta-amyloid peptide (Abeta) and neutralize Abeta cytotoxicity offer a promising new approach for treating Alzheimer's disease. When the plasma protein, alpha2-macroglobulin (alpha2M), is treated with methylamine (alpha2M-MA), it undergoes conformational change and acquires Abeta-binding activity. In this study, we demonstrate that a chemically stabilized preparation of human alpha2M conformational intermediates (alpha2M-cis-Pt/MA) binds Abeta with greatly increased affinity, compared with alpha2M-MA. alpha2M-cis-Pt/MA was generated by reacting alpha2M with the protein cross-linking reagent, cis-Pt, followed by methylamine. Increased Abeta-binding to alpha2M-cis-Pt/MA was demonstrated by co-migration of radio-iodinated proteins in non-denaturing PAGE, chemical cross-linking, and co-immunoprecipitation. The apparent K(D) for Abeta-binding to alpha2M-cis-Pt/MA was decreased 10-fold, compared with alpha2M-MA, to 29 nm. Native alpha2M demonstrated negligible Abeta-binding, as anticipated. alpha2M-cis-Pt/MA markedly counteracted Abeta-induced C6 cell apoptosis. Essentially complete inhibition of apoptosis was observed even when the Abeta was present at fourfold molar excess to alpha2M-cis-Pt/MA. Under equivalent conditions, alpha2M-MA inhibited apoptosis by 25 +/- 6%. When Abeta and alpha2M-cis-Pt/MA were added to human plasma in vitro, significant binding was detected. No binding was observed when an equivalent concentration of native alpha2M or alpha2M-MA was added to plasma. We propose that alpha2M-cis-Pt/MA is a novel alternative to Abeta-specific antibodies, for studying the efficacy of Abeta-binding agents in vitro and in vivo.  相似文献   

4.
The involvement of the low density lipoprotein receptor-related protein (LRP) in chylomicron remnant (CR) catabolism was investigated. Ligand blot analyses demonstrated that beta-very low density lipoproteins (beta-VLDL) incubated with apolipoprotein E (beta-VLDL+E) bound to the LRP and low density lipoprotein receptors, whereas active (receptor-binding) alpha 2-macroglobulin (alpha 2M) bound only to LRP partially purified from rat liver membranes. Iodinated beta-VLDL+E and active alpha 2M showed high affinity binding to the LRP/alpha 2M receptor of low density lipoprotein receptor-negative fibroblasts. The binding and degradation of radiolabeled alpha 2M by these cells were partially inhibited by beta-VLDL+E. Furthermore, alpha 2M interfered with the internalization of beta-VLDL+E and subsequent induction in the cholesterol esterification by these cells. These studies suggested that remnant lipoproteins and active alpha 2M compete for binding to the LRP/alpha 2M receptor. Next, we examined whether the LRP/alpha 2M receptor plays a role, in the presence of low density lipoprotein receptors, in the in vivo catabolism of CR in mice. In vivo studies demonstrated that the unlabeled active, but not the native, alpha 2M partially inhibited the plasma clearance and hepatic uptake of radiolabeled CR or apoE-enriched radiolabled CR. Likewise, apoE-enriched CR retarded the plasma clearance and hepatic uptake of radiolabeled active alpha 2M. These studies provide physiological evidence that the LRP/alpha 2M receptor may function as a CR receptor that removes CR from the plasma.  相似文献   

5.
The low density lipoprotein receptor-related protein (alpha(2)MR/LRP) is a cell surface receptor which is present on most cells and tissues. We show that the 85 kDa subunit, containing the transmembrane region and cytoplasmic domain is phosphorylated in vivo. Comparison of the phosphorylation of the low density lipoprotein receptor (LDLR) with a chimeric receptor containing the cytoplasmic domain of the alpha(2)MR/LRP (LDLR/LRP) showed that phosphorylation is exclusive to the cytoplasmic domain. Staurosporine, a general kinase inhibitor, resulted in a 40% lowering of phosphorylation of LDLR/LRP, but did not give rise to measurable changes in its membrane traffic in MDCK cells. The role of phosphorylation on degradation of the receptor was studied using inhibitors of lysosomal and proteasomal degradation. These studies showed that LDLR/LRP was rapidly turned over by proteasomal degradation but that this turnover was also not a consequence of phosphorylation.  相似文献   

6.
We have studied insulin-dependent regulation of macrophage alpha(2)-macroglobulin signaling receptors (alpha(2)MSR) and low density lipoprotein receptor-related protein/alpha(2)M receptors (LRP/alpha(2)MR) employing cell binding of (125)I-alpha(2)M*, inhibition of binding by receptor-associated protein (RAP) or Ni(2+), LRP/alpha(2)MR mRNA levels, and generation of second messengers. Insulin treatment increased the number of alpha(2)M* high (alpha(2)MSR) and low (LRP/alpha(2)MR) affinity binding sites from 1, 600 and 67,000 to 2,900 and 115,200 sites per cell, respectively. Neither RAP nor Ni(2+) blocked the binding of (125)I-alpha(2)M* to alpha(2)MSR on insulin- or buffer-treated cells, but they both blocked binding to LRP/alpha(2)MR. Insulin significantly increased LRP/alpha(2)MR mRNA levels in a dose- and time-dependent manner. Insulin-augmented (125)I-alpha(2)M* binding to macrophages was severely reduced by wortmannin, LY294002, PD98059, SB203580, or rapamycin. The increase in alpha(2)MSR receptor synthesis was reflected by augmented generation of IP(3) and increased [Ca(2+)](i) levels upon receptor ligation. Incubation of macrophages with wortmannin, LY294002, PD98059, SB203580, rapamycin, or antibodies against insulin receptors before insulin treatment and alpha(2)M* stimulation significantly reduced the insulin-augmented increase in IP(3) and [Ca(2+)](i) levels. Pretreatment of cells with actinomycin D or cycloheximide blocked the synthesis of new alpha(2)MSR. In conclusion, we show here that insulin coordinately regulates macrophage alpha(2)MSR and LRP/alpha(2)MR, utilizing both the PI 3-kinase and Ras signaling pathways to induce new synthesis of these receptors.  相似文献   

7.
Crystals of methylamine-treated alpha 2-macroglobulin (alpha 2M-MA), alpha 2-macroglobulin in complex with two molecules of trypsin, alpha 2M-T2, one molecule of plasmin, alpha 2M-PL, and one molecule of plasmin followed by methylamine-treatment, alpha 2M-PL(MA), have reproducibly been obtained using ammonium sulfate or magnesium sulfate as precipitants. The crystals are fragile tetragonal bipyramids of up to 1.5 mm in length. Crystals of alpha 2M-MA diffracted to at least 9 A resolution, crystals of alpha 2M-T2 diffracted to 10 A resolution and crystals of alpha 2M-PL and alpha 2M-PL(MA) diffracted to 11 A resolution. For alpha 2M-MA the cell parameters were determined as: a=b=257 A, c=555 A; and for alpha 2M-T2 as: a=b=247 A, c=559 A. For both preparations the space group was I4(1)22. As estimated from density measurements, the crystals of alpha 2M-MA and alpha 2M-T2 contain one 360 kDa alpha 2M dimer per asymmetric unit. The volume of the asymmetric unit/molecular weight, Vm, was estimated at 5.6 A3/Da. The crystal parameters of alpha 2M-PL and alpha 2M-PL(MA) were not determined.  相似文献   

8.
LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/β hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.  相似文献   

9.
Lipoprotein lipase (LPL), the major lipolytic enzyme involved in the conversion of triglyceride-rich lipoproteins to remnants, was found to compete with binding of activated alpha 2-macroglobulin (alpha 2M*) to the low density lipoprotein receptor-related protein (LRP)/alpha 2-macroglobulin receptor. Bovine milk LPL displaced both 125I-labeled alpha 2M* and 39-kDa alpha 2M receptor-associated protein (RAP) from the surface of cultured mutant fibroblasts lacking LDL receptors with apparent KI values at 4 degrees C of 6.8 and 30 nM, respectively. Furthermore, LPL inhibited the cellular degradation of 125I-alpha 2M* at 37 degrees C. Because both alpha 2M* and RAP interact with LRP, these data suggest that LPL binds specifically to this receptor. This was further supported by observing that an immunoaffinity-isolated polyclonal antibody against LRP blocked cellular degradation of 125I-LPL in a dose-dependent manner. In addition, 125I-LPL bound to highly purified LRP in a solid-phase assay with a KD of 18 nM, and this binding could be partially displaced with alpha 2M* (KI = 7 nM) and RAP (KI = 3 nM). Taken together, these data establish that LPL binds with high affinity to LRP and undergoes LRP-mediated cellular uptake. The implication of these findings for lipoprotein catabolism in vivo may be important if LRP binding is preserved when LPL is attached to lipoproteins. If so, LPL might facilitate LRP-mediated clearance of lipoproteins.  相似文献   

10.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

11.
Complement component 3 (C3) and alpha(2)-macroglobulin evolved from a common, evolutionarily old, ancestor gene. Low density lipoprotein-receptor-related protein/alpha(2)-macroglobulin receptor (LRP/alpha(2)MR), a member of the low density lipoprotein receptor family, is responsible for the clearance of alpha(2)-macroglobulin-protease complexes. In this study, we examined whether C3 has conserved affinity for LRP/alpha(2)MR. Ligand blot experiments with human (125)I-C3 on endosomal proteins show binding to a 600-kDa protein, indistinguishable from LRP/alpha(2)MR by the following criteria: it is competed by receptor-associated protein (the 39-kDa receptor-associated protein that impairs binding of all ligands to LRP/alpha(2)MR) and by lactoferrin and Pseudomonas exotoxin, other well known ligands of the multifunctional receptor. Binding of C3 is sensitive to reduction of the receptor and is Ca(2+)-dependent. All these features are typical for cysteine-rich binding repeats of the low density lipoprotein receptor family. In LRP/alpha(2)MR, they are found in four cassettes (2, 8, 10, and 11 repeats). Ligand blotting to chicken LR8 demonstrates that a single 8-fold repeat is sufficient for binding. Confocal microscopy visualizes initial surface labeling of human fibroblasts incubated with fluorescent labeled C3, which changes after 5 min to an intracellular vesicular staining pattern that is abolished in the presence of receptor-associated protein. Cell uptake is abolished in mouse fibroblasts deficient in LRP/alpha(2)MR. Native plasma C3 is not internalized. We demonstrate that the capacity to internalize C3 is saturable and exhibits a K(D) value of 17 nM. After intravenous injection, rat hepatocytes accumulate C3 in sedimentable vesicles with a density typical for endosomes. In conclusion, our ligand blot and uptake studies demonstrate the competence of the LRP/alpha(2)MR to bind and endocytose C3 and provide evidence for an LRP/alpha(2)MR-mediated system participating in C3 metabolism.  相似文献   

12.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds several ligands including the activated form of the pan-proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*) and amyloid precursor protein, two ligands genetically linked to Alzheimer's disease. To delineate the contribution of LRP to this disease, it will be necessary to identify the sites on this receptor which are responsible for recognizing these and other ligands to assist in the development of specific inhibitors. Structurally, LRP contains four clusters of cysteine-rich repeats, yet studies thus far suggest that only two of these clusters (clusters II and IV) bind ligands. Identifying binding sites within LRP for certain ligands, such as alpha(2)M*, has proven to be difficult. To accomplish this, we mapped the binding site on LRP for two inhibitors of alpha(2)M* uptake, monoclonal antibody 8G1 and an amino-terminal fragment of receptor-associated protein (RAP D1D2). Surprisingly, the inhibitors recognized different clusters of ligand binding repeats: 8G1 bound to repeats within cluster I, whereas the RAP fragment bound to repeats within cluster II. A recombinant LRP mini-receptor containing the repeats from cluster I along with three ligand binding repeats from cluster II was effective in mediating the internalization of (125)I-labeled alpha(2)M*. Together, these studies indicate that ligand binding repeats from both cluster I and II cooperate to generate a high affinity binding site for alpha(2)M*, and they suggest a strategy for developing specific inhibitors to block alpha(2)M* binding to LRP by identifying molecules capable of binding repeats in cluster I.  相似文献   

13.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) has several ligands including activated alpha 2-macroglobulin, pregnancy zone protein, and very low density lipoproteins enriched with apolipoprotein E. The diversity of ligands suggests a role for the alpha 2MR/LRP in a variety of processes including tissue remodeling and lipoprotein metabolism. We examined alpha 2MR/LRP in placental trophoblasts, invasive cells that also function in lipid transport and cholesterol metabolism. alpha 2MR/LRP protein was localized by immunohistochemistry in the syncytiotrophoblast of term placenta. Cytotrophoblasts did not stain prominently. alpha 2MR/LRP (protein and message) in primary cultures of human trophoblast cells increased as cytotrophoblasts differentiated into syncytiotrophoblast. 8-Bromo-cAMP prevented this increase and suppressed alpha 2MR/LRP expression. The cyclic nucleotide had similar suppressive effects on alpha 2MR/LRP in BeWo choriocarcinoma cells. In contrast, low density lipoprotein receptor gene expression was increased. We conclude that: 1) there is a differentiation-dependent pattern of alpha 2MR/LRP expression in the human trophoblast; 2) cAMP negatively regulates alpha 2MR/LRP; 3) there is an inverse relationship between alpha 2MR/LRP and low density lipoprotein receptor gene expression in trophoblast cells.  相似文献   

14.
Cellular binding of receptor-recognized forms of alpha2-macroglobulin (alpha2M*) is mediated by the low-density lipoprotein receptor related protein (LRP) and the alpha2M signaling receptor (alpha2MSR). In nonmalignant cells, ligation of alpha2MSR promotes DNA synthesis and cellular proliferation. Here, we report that insulin treatment of highly metastatic 1-LN human prostate carcinoma selectively increases alpha2MSR expression and binding of alpha2M* to 1-LN cells. alpha2M* induces transient increases in intracellular calcium and inositol 1,4,5-trisphosphate in insulin-treated 1-LN cells, consistent with activation of alpha2MSR. Inhibition of signaling cascades activated by insulin blocks upregulation of alpha2MSR. By contrast, alpha2M* does not bind to nor induce intracellular signaling in PC-3 cells, even though 1-LN cells were subcloned from PC-3 cells. We suggest that alpha2M* behaves like a growth factor in these highly malignant cells. The 1-LN metastatic phenotype may result, in part, from aberrant expression of alpha2MSR, indicating the possible involvement of alpha2M* in tumor progression.  相似文献   

15.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

16.
We examined the effects of lecithin:cholesterol acyl transferase (LCAT) and of lipoprotein lipase (LPL) on the conversion of high density lipoproteins (HDL) towards fractions of lower densities using the analytical ultracentrifuge. Freshly isolated whole plasma was incubated for 24 h at 37 degrees C in the presence or absence of active enzyme systems. In some cases, lipoproteins were removed by selective precipitations; alternatively, we added triglyceride-rich lipoproteins (TGRLP) or Intralipid to the incubations. The results are as follows. 1) The incubation of whole plasma containing active LCAT leads to a conversion of HDL3 to a fraction of lower density, notably HDL2a. If LCAT is inhibited, the conversion is far less pronounced. 2) If very low and low density lipoproteins are removed by phosphotungstate precipitation and the supernatant is incubated with LCAT, HDL3 shifts towards higher densities. 3) The presence of phosphatidylcholine/cholesterol liposomes or the presence of blood cells as a source of additional LCAT substrate had only little influence on the HDL conversion in our system. 4) The addition of TGRLP or of Intralipid at minimal ratios of 2.5:1 caused an almost complete conversion of HDL3 to HDL2b. This conversion was dependent on active LCAT. 5) LPL also caused a shift of HDL3 to HDL2a if TGRLP was present. HDL2b, however, was not formed by LPL unless LCAT was active.  相似文献   

17.
In order to test the hypothesis that fish-eye disease (FED) is due to a deficient activation of lecithin:cholesterol acyltransferase (LCAT) by its co-factor apolipoprotein (apo) A-I, we overexpressed the natural mutants T123I, N131D, N391S, and other engineered mutants in Cos-1 cells. Esterase activity was measured on a monomeric phospholipid enelogue, phospholipase A(2) activity was measured on reconstituted high density lipoprotein (HDL), and acyltransferase activity was measured both on rHDL and on low density lipoprotein (LDL). The natural FED mutants have decreased phospholipase A(2) activity on rHDL, which accounts for the decreased acyltransferase activity previously reported. All mutants engineered at positions 131 and 391 had decreased esterase activity on a monomeric substrate and decreased acyltransferase activity on LDL. In contrast, mutations at position 123 preserved these activities and specifically decreased phospholipase A(2) and acyltransferase activites on rHDL. Mutations of hydrophilic residues in amphipathic helices alpha 3;-4 and alpha His to an alanine did not affect the mutants' activity on rHDL. Based upon the 3D model built for human LCAT, we designed a new mutant F382A, which had a biochemical phenotype similar to the natural T123I FED mutant.These data suggest that residues T123 and F382, located N-terminal of helices alpha 3-4 and alpha His, contribute specifically to the interaction of LCAT with HDL and possibly with its co-factor apoA-I. Residues N131 and N391 seem critical for the optimal orientation of the two amphipathic helices necessary for the recognition of a lipoprotein substrate by the enzyme.  相似文献   

18.
The binding of alpha 2-macroglobulin (alpha 2M) to human peripheral blood monocytes was investigated. Monocytes, the precursors of tissue macrophages, were isolated from fresh blood by centrifugal elutriation or density gradient centrifugation. Binding studies were performed using 125I-labeled alpha 2M. Cells and bound ligand were separated from free ligand by rapid vacuum filtration. Nonlinear least-squares analysis of data obtained in direct binding studies at 0 degrees C showed that monocytes bound the alpha 2M-thrombin complex with a Kd of 3.0 +/- 0.9 nM and the monocyte had 1545 +/- 153 sites/cell. Thrombin alone did not compete for the site. Binding was divalent cation dependent. Direct binding studies also demonstrated that monocytes bound methylamine-treated alpha 2M in a manner similar to alpha 2M-thrombin. Competitive binding studies showed that alpha 2M-thrombin and methylamine-treated alpha 2M bound to the same sites on the monocyte. In contrast, native alpha 2M did not compete with alpha 2M-thrombin for the site. Studies done at 37 degrees C suggested that after binding, the monocyte internalized and degraded alpha 2M-thrombin and excreted the degradation products. Receptor turnover and degradation of alpha 2M-thrombin complexes were blocked in monocytes treated with chloroquine, an inhibitor of lysosomal function. Our results indicate that human monocytes have a divalent cation dependent, high-affinity binding site for alpha 2M-thrombin and methylamine-treated alpha 2M which may function to clear alpha 2M-proteinase complexes from the circulation.  相似文献   

19.
Traditionally, lecithin:cholesterol acyltransferase (LCAT) role in the reverse cholesterol transport (RCT) has been considered "antiatherogenic" as the cholesterol esterification is the prerequisite for the formation of mature high density lipoprotein (HDL) particles and may create a gradient necessary for the flow of unesterified cholesterol (UC) from tissues to plasma. However, newer data suggest that a higher esterification rate is not necessarily protective. Here we review the available data on the role of LCAT in RCT and propose that the LCAT-mediated esterification of plasma cholesterol promotes RCT only in the presence of sufficient concentrations of HDL2 while this reaction may be atherogenic in the presence of high concentration of plasma low density lipoprotein (LDL) cholesterol Thus, the "protective" or potentially "atherogenic" role of LCAT depends on the quality of HDL and concentration of LDL. This hypothesis is consistent with the known high predictive value of LDL/HDL cholesterol ratio.  相似文献   

20.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号