首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two lily (Lilium longiflorum) PISTILLATA (PI) genes, Lily MADS Box Gene 8 and 9 (LMADS8/9), were characterized. LMADS9 lacked 29 C-terminal amino acids including the PI motif that was present in LMADS8. Both LMADS8/9 mRNAs were prevalent in the first and second whorl tepals during all stages of development and were expressed in the stamen only in young flower buds. LMADS8/9 could both form homodimers, but the ability of LMADS8 homodimers to bind to CArG1 was relatively stronger than that of LMADS9 homodimers. 35S:LMADS8 completely, and 35S:LMADS9 only partially, rescued the second whorl petal formation and partially converted the first whorl sepal into a petal-like structure in Arabidopsis pi-1 mutants. Ectopic expression of LMADS8-C (with deletion of the 29 amino acids of the C-terminal sequence) or LMADS8-PI (with only the PI motif deleted) only partially rescued petal formation in pi mutants, which was similar to what was observed in 35S:LMADS9/pi plants. In contrast, 35:LMADS9+L8C (with the addition of the 29 amino acids of the LMADS8 C-terminal sequence) or 35S:LMADS9+L8PI (with the addition of the LMADS8 PI motif) demonstrated an increased ability to rescue petal formation in pi mutants, which was similar to what was observed in 35S:LMADS8/pi plants. Furthermore, ectopic expression of LMADS8-M (with the MADS domain truncated) generated more severe dominant negative phenotypes than those seen in 35S:LMADS9-M flowers. These results revealed that the 29 amino acids including the PI motif in the C-terminal region of the lily PI orthologue are valuable for its function in regulating perianth organ formation.  相似文献   

3.
Hsu HF  Yang CH 《Plant & cell physiology》2002,43(10):1198-1209
cDNA for a B group MADS box gene OMADS3 was isolated and characterized from Oncidium Gower Ramsey, an important species of orchid. OMADS3 encoding a 204 amino acid protein showed high sequence homology to both paleoAP3 and TM6 lineage of B group MADS box gene such as monocots AP3 homologue LMADS1 in lily and GDEF1 in Gerbera hybrida. Despite the sequence homology, consensus motifs identified in the C-terminal region of B group genes were absent in OMADS3. Southern analysis indicated that OMADS3 was present in O. Gower Ramsey genome in low copy numbers. Different from most B group genes, OMADS3 mRNA was detected in all four floral organs as well as in vegetative leaves. This is similar to the expression pattern of GDEF1. 35S::OMADS3 transgenic plants showed novel phenotypes by producing terminal flowers similar to those observed in transgenic plants ectopically expressed A functional genes such as AP1. Ectopic expression of OMADS3 cDNA truncated with the MADS box or C terminal region in Arabidopsis generated novel ap2-like flowers in which sepals and petals were converted into carpel-like and stamen-like structures. Yeast two-hybrid analysis indicated that OMADS3 is able to strongly form homodimers. Our results suggested that OMADS3 might represent an ancestral form of TM6-like gene which was conserved in monocots with a function similar to A functional gene in regulating flower formation as well as floral initiation.  相似文献   

4.
Su K  Zhao S  Shan H  Kong H  Lu W  Theissen G  Chen Z  Meng Z 《The New phytologist》2008,178(3):544-558
In core eudicots, euAP3-type MADS-box genes encode a PISTILLATA (PI)-derived motif, as well as a C-terminal euAP3 motif that originated from a paleoAP3 motif of an ancestral APETALA3 (AP3)-like protein through a translational frameshift mutation. To determine the functional and evolutionary relevance of these motifs, a series of point mutation and domain-swap constructs were generated, involving CsAP3, a paleoAP3-type gene from the basal angiosperm Chloranthus spicatus encoding a truncated paleoAP3 motif, and AtAP3, a euAP3-type gene from the core eudicot Arabidopsis thaliana. The chimeric constructs were expressed in A. thaliana under the control of the AP3 promoter or the CaMV 35S promoter in an ap3 mutant or wild-type background, respectively. Significant recovery of AP3 function was obtained in both complementation and ectopic expression experiments whenever the region upstream of the C-terminal motifs (MIK region) from A. thaliana was taken, even when the PI-derived motif and the truncated paleoAP3 motif of CsAP3 substituted for the corresponding sequences from AtAP3. However, no or very weak complementation or gain-of-function was seen when the MIK region was from CsAP3. Our data suggest that changes in the MIK region rather than mutations in the C-terminal domain were of crucial importance for the evolution of the functional specificity of euAP3-type proteins in stamen and petal development.  相似文献   

5.
Identification of a rice APETALA3 homologue by yeast two-hybrid screening   总被引:22,自引:0,他引:22  
  相似文献   

6.
Three cDNAs showing a high degree of homology to the SQUA subfamily of MADS box genes were isolated and characterized from the lily (Lilium longiflorum). Lily MADS Box Gene 5 (LMADS5) showed high sequence identity to oil palm (Elaeis guineensis) SQUAMOSA3 (EgSQUA3). LMADS6 is closely related to LMADS5 whereas LMADS7 is more related to DOMADS2, an orchid (Dendrobium) gene in the SQUA subfamily. The expression pattern for these three genes was similar and their RNAs were detected in vegetative stem and inflorescence meristem. LMADS5 and 6 were highly expressed in vegetative leaves and carpel, whereas LMADS7 expression was absent. Ectopic expression of LMADS5, 6 or 7 in transgenic Arabidopsis plants showed novel phenotypes by flowering early and producing terminal flowers. Homeotic conversions of sepals to carpelloid structures and of petal to stamen-like structures were also observed in 35S::LMADS5, 6 or 7 flowers. Ectopic expression of LMADS6 or LMADS7 was able to complement the ap1 flower defect in transgenic Arabidopsis ap1 mutant plants. These results strongly indicated that the function of these three lily genes was involved in flower formation as well as in floral induction. Furthermore, the ability of lily LMADS6 and 7 to complement the Arabidopsis ap1 mutant provided further evidence to show that the conserved motifs (paleoAP1 or euAP1) in the C-terminus of the SQUA/AP1 subfamily of MADS box genes is not strictly necessary for their function.  相似文献   

7.
Piwarzyk E  Yang Y  Jack T 《Plant physiology》2007,145(4):1495-1505
The B-class genes APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis (Arabidopsis thaliana) and their orthologs in other species have been the focus of studies to elucidate the development of petals and stamens in angiosperm flowers. Evolutionary analysis indicates that B-class genes have undergone multiple gene duplication events in angiosperms. The resultant B-class lineages are characterized by short, conserved amino acid sequences at the extreme C-terminal end of the B-class proteins. AP3 is a member of the euAP3 lineage that contains both the euAP3 and PI-derived motifs at the C terminus. PI is a member of the PI lineage that contains the C-terminal PI motif at the C terminus. Despite conservation over a wide evolutionary distance, the function of C-terminal motifs is not well understood. In this study, we demonstrate that truncated forms of AP3 and PI, which lack the conserved C-terminal motifs, function to direct floral organ identity specification in Arabidopsis plants. By contrast, larger truncations, which remove the third putative amphipathic alpha-helix in the K domain of AP3 or PI, are nonfunctional. We conclude that the euAP3 and PI-derived motifs of AP3 and the PI motif of PI are not essential for floral organ identity function of AP3 and PI in Arabidopsis.  相似文献   

8.
9.
《Gene》2014,537(1):100-107
APETALA3 (AP3) homologs are involved in specifying petal and stamen identities in core eudicot model organisms. In order to investigate the functional conservation of AP3 homologs between core eudicots and basal angiosperm, we isolated and identified two AP3 homologs from Magnolia wufengensis, a woody basal angiosperm belonging to the family Magnoliaceae. Sequence and phylogenetic analyses revealed that both genes are clade members of the paleoAP3 lineage. Moreover, a highly conserved motif of paleoAP3 is found in the C-terminal regions of MAwuAP3_1/2 proteins, but the PI-derived motif, usually present in AP3/DEF-like lineage members, is missing. Semi-quantitative and real time PCR analyses showed that the expression of MAwuAP3_1/2 was restricted to tepals and stamens. However, the MAwuAP3_1 expression was maintained at a high level during the rapid increased in size of tepals and stamens, while MAwuAP3_2 mRNA was only detected at the early stage of tepal and stamen development. Furthermore, the expression of MAwuAP3_1/2 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expressions of the endogenous AP3 gene. Moreover, the 35S::MAwuAP3_1/2 transgenic Arabidopsis can be used partially to rescue the loss-of-function ap3 mutant (ap3-3) of Arabidopsis. These findings call for a more comprehensive understanding of the B-functional evolution from basal angiosperm to core eudicot clades.  相似文献   

10.
The floral quartet model proposes that plant MADS box proteins function as higher order tetrameric complexes. However, in planta evidence for MADS box tetramers remains scarce. Here, we applied a strategy using in vivo fluorescence resonance energy transfer (FRET) based on the distance change and distance symmetry of stable tetrameric complexes in tobacco (Nicotiana benthamiana) leaf cells to improve the accuracy of the estimation of heterotetrameric complex formation. This measuring system precisely verified the stable state of Arabidopsis petal (AP3/PI/SEP3/AP1) and stamen (AP3/PI/SEP3/AG) complexes and showed that the lily (Lilium longiflorum) PI co-orthologs LMADS8 and LMADS9 likely formed heterotetrameric petal complexes with Arabidopsis AP3/SEP3/AP1, which rescued petal defects of pi mutants. However, L8/L9 did not form heterotetrameric stamen complexes with Arabidopsis AP3/SEP3/AG to rescue the stamen defects of the pi mutants. Importantly, this system was applied successfully to find complicated tepal and stamen heterotetrameric complexes in lily. We found that heterodimers of B function AP3/PI orthologs (L1/L8) likely coexist with the homodimers of PI orthologs (L8/L8, L9/L9) to form five (two most stable and three stable) tepal- and four (one most stable and three stable) stamen-related heterotetrameric complexes with A/E and C/E function proteins in lily. Among these combinations, L1 preferentially interacted with L8 to form the most stable heterotetrameric complexes, and the importance of the L8/L8 and L9/L9 homodimers in tepal/stamen formation in lily likely decreased to a minor part during evolution. The system provides substantial improvements for successfully estimating the existence of unknown tetrameric complexes in plants.  相似文献   

11.
12.
Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.  相似文献   

13.
Protein assembly is a critical process involved in a wide range of cellular events and occurs through extracellular and/or transmembrane domains (TMs). Previous studies demonstrated that a GXXXG motif is crucial for homodimer formation. Here we selected the TMs of ErbB1 and ErbB2 as a model since these receptors function both as homodimers and as heterodimers. Both TMs contain two GXXXG-like motifs located at the C and N termini. The C-terminal motifs were implicated previously in homodimer formation, but the role of the N-terminal motifs was not clear. We used the ToxR system and expressed the TMs of both ErbB1 and ErbB2 containing only the N-terminal GXXXG motifs. The data revealed that the ErbB2 but not the ErbB1 construct formed homodimers. Importantly, a synthetic ErbB1 TM peptide was able to form a heterodimer with ErbB2, by displacing the ErbB2 TM homodimer. The specificity of the interaction was demonstrated by using three controls: (i) Two single mutations within the GXXXG-like motif of the ErbB1 peptide reduced or preserved its activity, in agreement with similar mutations in glycophorin A. (ii) A TM peptide of the bacterial Tar receptor did not assemble with the ErbB2 construct. (iii) The ErbB1 peptide had no effect on the dimerization of a construct containing the TM-1 domain of the Tar receptor. Fluorescence microscopy demonstrated that all the peptides localized on the membrane. Furthermore, incubation with the peptides had no effect on bacterial growth and protein expression levels. Our results suggest that the N-terminal GXXXG-like motif of the ErbB1 TM plays a role in heterodimerization with the ErbB2 transmembrane domain. To our knowledge, this is the first demonstration of a transmembrane domain with two distinct recognition motifs, one for homodimerization and the other for heterodimerization.  相似文献   

14.
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3, which interact to form a heterodimer that mediates termination at all three stop codons. By C-terminal deletion analysis of eRF1 from the yeast Saccharomyces cerevisiae, we show that the extreme C-terminus of this 437-amino-acid protein defines a functionally important domain for translation termination. A strain encoding eRF1 lacking the C-terminal 32 amino acids is not viable, whereas deletion of the C-terminal 19 amino acids is viable but shows a termination defect in vivo causing an enhancement of nonsense suppression. Using a combination of two-hybrid analysis and in vitro binding studies, we demonstrate that deletions encompassing the C-terminus of eRF1 cause a significant reduction in eRF3 binding to eRF1. All of the C-terminally truncated eRF1 still bind the ribosome, suggesting that the C-terminus does not constitute a ribosome-binding domain and eRF1 does not need to form a stable complex with eRF3 in order to bind the ribosome. These data, together with previously published data, suggest that the region between amino acids 411 and 418 of yeast eRF1 defines an essential functional domain that is part of the major site of interaction with eRF3. However, a stable eRF1:eRF3 complex does not have to be formed to maintain viability or efficient translation termination. Alignment of the seven known eukaryotic eRF1 sequences indicates that a highly conserved motif, GFGGIGG/A is present within the region of the C-terminus, although our deletion studies suggest that it is sequences C-terminal to this region that are functionally important.  相似文献   

15.
c-Abl是非受体酪氨酸激酶,它在细胞内被一些基因毒性的、氧化的及其它形式的压力所激活。目前研究证明:应用标记的c-Abl发现其在细胞内可以相互形成同源二聚体,并且一分子c-Abl的N末端区域与相应的另一分子的C末端相互作用形成二聚体。实验进一步表明: cAbl SH3 结构域结合到另一c-Abl 分子富含脯氨酸的C-末端约958-982氨基酸区域。如果去除c-Abl 富含脯氨酸的结构域,就会阻止二聚体的形成。这些结果首先证实了c-Abl在细胞内可以相互形成同源二聚体,并暗示着二聚体的形成可能影响着c-Abl活性的调节。  相似文献   

16.
Tzeng TY  Hsiao CC  Chi PJ  Yang CH 《Plant physiology》2003,133(3):1091-1101
Two AGL2-like MADS-box genes, Lily MADS Box Gene (LMADS) 3 and LMADS4, with extensive homology of LMADS3 to the Arabidopsis SEPALLATA3 were characterized from the lily (Lilium longiflorum). Both LMADS3 and LMADS4 mRNA were detected in the inflorescence meristem, in floral buds of different developmental stages, and in all four whorls of the flower organ. LMADS4 mRNA is also expressed in vegetative leaf and in the inflorescence stem where LMADS3 expression is absent. Transgenic Arabidopsis, which ectopically expresses LMADS3, showed novel phenotypes by significantly reducing plant size, flowering extremely early, and loss of floral determinacy. By contrast, 35S::LMADS4 transgenic plants were morphologically indistinguishable from wild-type plants. The early-flowering phenotype in 35S::LMADS3 transgenic Arabidopsis plants was correlated with the up-regulation of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1, LUMINIDEPENDENS, and flower meristem identity genes LEAFY and APETALA1. This result was further supported by the ability of 35S::LMADS3 to rescue the late-flowering phenotype in gigantea-1 (gi-1), constans-3 (co-3), and luminidependens-1 but not for ft-1 or fwa-1 mutants. The activation of these flowering time genes is, however, indirect because their expression was unaffected in plants transformed with LMADS3 fused with rat glucocorticoid receptor in the presence of both dexamethasone and cycloheximide.  相似文献   

17.
18.
Tzeng TY  Chen HY  Yang CH 《Plant physiology》2002,130(4):1827-1836
Two MADS box genes, Lily MADS Box Gene 2 (LMADS2) and Eustoma grandiflorum MADS Box Gene 1 (EgMADS1), with an extensive similarity to the petunia (Petunia hybrida) FLORAL BINDING PROTEIN 7/11 and Arabidopsis AGL11, were characterized from the lily (Lilium longiflorum) and lisianthus (Eustoma grandiflorum). The expression of LMADS2 and EgMADS1 mRNA was restricted to the carpel and was absent in the other flower organs or vegetative leaves. LMADS2 mRNA was detected mainly in ovules and weakly in style tissues of the carpel, whereas EgMADS1 mRNA was only expressed in the ovules. Transgenic Arabidopsis plants ectopically expressing LMADS2 or EgMADS1 showed similar novel phenotypes resembling 35S::AGAMOUS plants by significantly reducing plant size, flowering early, and losing inflorescence indeterminacy. Ectopic expression of these two genes also generated similar ap2-like flowers by inducing homeotic conversion of the sepals into carpel-like structures in which stigmatic papillae and ovules were observed. In addition, the petals were converted into stamen-like structures in the second whorl of 35S::LMADS2 and 35S::EgMADS1 transgenic Arabidopsis. Our data indicated that LMADS2 and EgMADS1 are putative D functional MADS box genes in lily and lisianthus with a function similar to C functional genes once ectopically expressed in Arabidopsis.  相似文献   

19.
The flor strains of Saccharomyces cerevisiae form a flor on the surface of wine after alcoholic fermentation. High hydrophobicity of the cell surface is suggested to be important for flor formation by the flor wine yeasts. However, the molecular mechanism of flor formation is not clear. We found that expression of C-terminal deleted NRG1 lacking its two C2H2 zinc finger motifs (NRG1(1-470)) on the multicopy plasmid conferred the ability to form a flor to a non-flor laboratory strain. The cell surface hydrophobicity of NRG1(1-470) was higher than of the non-flor strain. Disruption of the Nrg1p-repressed gene FLO11, which encodes a cell surface glycoprotein that functions as a flocculin or an adhesin, abolished flor formation. Moreover, expression of FLO11 on a multicopy plasmid could also cause flor formation. These results indicate that FLO11 is essential for flor formation by NRG1(1-470). In addition, the results suggest that the C-terminal truncated form of Nrg1p exerts a dominant negative effect on FLO11 repression, resulting in FLO11 expression and, thus, flor formation.  相似文献   

20.
Hematopoietic progenitor kinase 1 (HPK1) is implicated in signaling downstream of the T cell receptor. Its non-catalytic, C-terminal half contains several prolinerich motifs, which have been shown to interact with different SH3 domain-containing adaptor proteins in vitro. One of these, Mona/Gads, was also shown to bind HPK1 in mouse T cells in vivo. The region of HPK1 that binds to the Mona/Gads C-terminal SH3 domain has been mapped and shows only very limited similarity to a recently identified high affinity binding motif in SLP-76, another T-cell adaptor. Using isothermal titration calorimetry and x-ray crystallography, the binding of the HPK1 motif to Mona/Gads SH3C has now been characterized in molecular detail. The results indicate that although charge interactions through an RXXK motif are essential for complex formation, a PXXP motif in HPK1 strongly complements binding. This unexpected binding mode therefore differs considerably from the previously described interaction of Mona/Gads SH3C with SLP-76. The crystal structure of the complex highlights the great versatility of SH3 domains, which allows interactions with very different proteins. This currently limits our ability to categorize SH3 binding properties by simple rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号