首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among osteichthyans, basal actinopterygian fishes (e.g. paddlefish and bowfins) have paired fins with three endoskeletal components (pro-, meso- and metapterygia) articulating with polybasal shoulder girdles, while sarcopterygian fishes (lungfish, coelacanths and relatives) have paired fins with one endoskeletal component (metapterygium) articulating with monobasal shoulder girdles. In the fin–limb transition, the origin of the sarcopterygian paired fins triggered new possibilities of fin articulation and movement, and established the proximal segments (stylopod and zeugopod) of the presumptive tetrapod limb. Several authors have stated that the monobasal paired fins in sarcopterygians evolved from a primitive polybasal condition. However, the fossil record has been silent on whether and when the inferred transition took place. Here we describe three-dimensionally preserved shoulder girdles of two stem sarcopterygians (Psarolepis and Achoania) from the Lower Devonian of Yunnan, which demonstrate that stem sarcopterygians have polybasal pectoral fin articulation as in basal actinopterygians. This finding provides a phylogenetic and temporal constraint for studying the origin of the stylopod, which must have originated within the stem sarcopterygian lineage through the loss of the propterygium and mesopterygium.  相似文献   

2.
The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe‐finned fish and crown tetrapods. In the light of a recent study of these homologies, we re‐examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty‐nine extinct and six extant sarcopterygians were included in a meta‐analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony‐based character optimization in order to reconstruct muscle anatomy in ancestral lobe‐finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. Our synthesis revealed that many tetrapod shoulder muscles probably were already present in tetrapodomorph fish, while most of the more‐distal appendicular muscles either arose later from largely undifferentiated dorsal and ventral muscle masses or did not leave clear correlates of attachment in these taxa. Based on this review and meta‐analysis, we postulate a stepwise sequence of specific appendicular muscle acquisitions, splits, and fusions that led from the ancestral sarcopterygian pectoral fin to the ancestral tetrapod forelimb. This sequence largely agrees with previous hypotheses based on palaeontological and comparative work, but it is much more comprehensive in terms of both muscles and taxa. Combined with existing information about the skeletal system, our new synthesis helps to illuminate the genetic, developmental, morphological, functional, and ecological changes that were key components of the fins‐to‐limbs transition.  相似文献   

3.
Among bony fishes, the ontogenetic sequence by which the actinopterygian scapulocoracoid develops has been well described, but that of the sarcopterygian scapulocoracoid is poorly known, as the majority of taxa are only known from fossils. To rectify this, the cartilaginous scapulocoracoid of the extant lungfish Neoceratodus forsteri is examined. In initial stages of its development, the scapulocoracoid of Neoceratodus has a simple rounded shape, and supports the glenoid fossa. It appears nearly contemporaneously with the proximal endochondral element (humerus) of the pectoral fin. Pectoral fin elements develop by segmentation from a continuous field of cartilaginous precursor cells extending distally from the glenoid region of the scapulocoracoid. Subsequent scapulocoracoid development produces a ventromedial process, which is not associated with this field of precursor cells. A dorsal process also develops outside this field. Thus, the scapulocoracoid of Neoceratodus may consist of at least two developmentally distinct regions; (1) the ventromedial being homologous with the coracoid of actinopterygians, tetrapods and other jawed vertebrates and (2) a smaller dorsal process, homologous to the scapular region. The two, together with the glenoid region, give an overall triangular shape. The scapulocoracoids of fossil lungfish and other sarcopterygian fishes are also triangular and are composed of scapular and coracoid regions, rather than the 'buttresses' associated with scapulocoracoids of the Actinopterygii and Tetrapoda.  相似文献   

4.
The presupracleithrum is an exoskeletal pectoral bone that occurs in Paleozoic and Mesozoic actinopterygian fishes. It has been equated more than once with an opercular element in brachiopterygian fishes. In recent cladistic analyses, this alleged homology is used to assign brachiopterygians to actinopterygians. However, a comparison of brachiopterygian and actinopterygian crania shows clearly that the former lack a presupracleithrum.  相似文献   

5.
Lepidotrichia are dermal elements located at the distal margin of osteichthyan fins. In sarcopterygians and actinopterygians, the term has been used to denote the most distal bony hemisegments and also the more proximal, scale-covered segments which overlie endochondral bones of the fin. In certain sarcopterygian fishes, including the Rhizodontida, these more proximal, basal segments are very long, extending at least half the length of the fin. The basal segments have a subcircular cross section, rather than the crescentic cross section of the distal lepidotrichial hemisegments, which lack a scale cover and comprise short, generally regular, elements. In rhizodonts and other sarcopterygians, e.g. Eusthenopteron, the basal elements are the first to appear during fin development, followed by the endochondral bones and then the distal lepidotrichia. This sequence contradicts the 'clock-face model' of fin development proposed by Thorogood in which the formation of endochondral bones is followed by development of lepidotrichia. However, if elongate basal 'lepidotrichia' are not homologous with more distal, jointed lepidotrichia and if the latter form within a distal fin-fold and the former outside this fold, then Thorogood's 'clock-face' model remains valid. This interpretation might indicate that the fin-fold has been lost in early digited stem-tetrapods such as Acanthostega and Ichthyostega and elongate basal elements, but not true lepidotrichia, occur in the caudal fins of these taxa.  相似文献   

6.
The relationships of the Devonian palaeonisciform fish Cheirolepis are examined and the early evolutionary trends within the Actinopterygii and the Osteichthyes are considered.
Cheirolepis is the most primitive known actinopterygian. The contemporary stegotrachelid palaeonisciforms are more advanced in their cranial and locomotor anatomy. The general directions of these advances are similar to those subsequently displayed by later palaeonisciforms over the stegotrachelids themselves. Cheirolepis , furthermore, possesses many characters which can be logically interpreted as primitive for the Osteichthyes by extrapolation of trends in actinopterygian and sarcopterygian lineages. 11 is the most primitive known osteichthyan.
The Osteichthyes are considered to have arisen from a micromerically-scaled acanthodian or acanthodian-like ancestor at the end of the Silurian period.  相似文献   

7.
The oldest sarcopterygian fish   总被引:5,自引:0,他引:5  
The study of basal sarcopterygians is crucial to an understanding of the relationships and interrelationships of sarcopterygians, including their relationship to tetrapods. The new material from Qujing, Yunnan, southwestern China, represents the oldest known sarcopterygian fish and extends the record of sarcopterygians to the Late Silurian, or about 410 Ma. The new form is close to Youngolepis and Powichthys at the base of the Crossopterygii. Similarities among the lower jaws of onychodonts, porolepiforms, Youngolepis, Powichthys and the new form support a position of onychodonts within the Crossopterygii. Four characters in the character matrix of Cloutier & Ahlberg (1996, in Stiassny et al: Interrelationships of Fishes , Academic Press) are reviewed, and sarcopterygian interrelationships are studied on the basis of their data with minor modifications. The new scheme of sarcopterygian interrelationships differs markedly from Cloutier & Ahlberg's scheme. Neither actinistians nor onychodonts are situated at the base of Sarcopterygii, but within the Crossopterygii. Youngolepis and Powichthys are at the base of the Crossopterygii, instead of being the sister group of dipnoans plus Diabolepis.  相似文献   

8.
Jessen, H. L.: Schultergürtel und Pectoralflosse hci Actinopterygiern. [Shoulder girdle and pectoral fin in actinopterygians.] Fossils and Strata , Number 1, pp. 1–101, Pls. 1–25. Oslo, 5th May 1972.
The anatomy of the shoulder girdle and pectoral fin is investigated in adults and larvae of Asperser, Amia, Lepisosteus, Elops, Salmo , and Polypterus . In comparison with similar structures in other gnathostomian fishes these studies yielded certain conclusions as concerns the interrelationships of the recent actinopterygian groups and the affinities of the hrachiopterygians, the latter by this evidence belonging to an evolutionary line of their own. With regard to actinopterygian phylogeny, a comparison with the shoulder girdle and pectoral fin in fossil forms, including Chondrosteus, Moythomoasia, Palaeoniscus, Pteronisculus, Pachycormus, Catarus, Hypsocormus , and Birzeria , shows that teleosteans presumably are closer to chondrosteans than holosteans, and that holosteans seem to have branched off comparatively early from the actinopterygian stem.  相似文献   

9.
10.
The fossil record provides unique clues about the primitive pattern of lobed fins, the precursors of digit-bearing limbs. Such information is vital for understanding the evolutionary transition from fish fins to tetrapod limbs, and it guides the choice of model systems for investigating the developmental changes underpinning this event. However, the evolutionary preconditions for tetrapod limbs remain unclear. This uncertainty arises from an outstanding gap in our knowledge of early lobed fins: there are no fossil data that record primitive pectoral fin conditions in coelacanths, one of the three major groups of sarcopterygian (lobe-finned) fishes. A new fossil from the Middle-Late Devonian of Wyoming preserves the first and only example of a primitive coelacanth pectoral fin endoskeleton. The strongly asymmetrical skeleton of this fin corroborates the hypothesis that this is the primitive sarcopterygian pattern, and that this pattern persisted in the closest fish-like relatives of land vertebrates. The new material reveals the specializations of paired fins in the modern coelacanth, as well as in living lungfishes. Consequently, the context in which these might be used to investigate evolutionary and developmental relationships between vertebrate fins and limbs is changed. Our data suggest that primitive actinopterygians, rather than living sarcopterygian fishes and their derived appendages, are the most informative comparators for developmental studies seeking to understand the origin of tetrapod limbs.  相似文献   

11.
The early origin of four vertebrate Hox gene clusters duringthe evolution of gnathostomes was likely caused by two consecutiveduplications of the entire genome and the subsequent loss ofindividual genes. The presumed conserved and important rolesof these genes in tetrapods during development led to the generalassumption that Hox cluster architecture had remained unchangedsince the last common ancestor of all jawed vertebrates. Butrecent data from teleost fishes reveals that this is not thecase. Here, we present an analysis of the evolution of vertebrateHox genes and clusters, with emphasis on the differences betweenthe Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian)lineages. In contrast to the general conservation of genomicarchitecture and gene sequence observed in sarcopterygians,the evolutionary history of actinopterygian Hox clusters likelyincludes an additional (third) genome duplication that initiallyincreased the number of clusters from four to eight. We document,for the first time, higher rates of gene loss and gene sequenceevolution in the Hox genes of fishes compared to those of landvertebrates. These two observations might suggest that two differentmolecular evolutionary strategies exist in the two major vertebratelineages. Preliminary data from the African cichlid fish Oreochromisniloticus compared to those of the pufferfish and zebrafishreveal important differences in Hox cluster architecture amongfishes and, together with genetic mapping data from Medaka,indicate that the third genome duplication was not zebrafish-specific,but probably occurred early in the history of fishes. Each descendingfish lineage that has been characterized so far, distinctivelymodified its Hox cluster architecture through independent secondarylosses. This variation is related to the large body plan differencesobserved among fishes, such as the loss of entire sets of appendagesand ribs in some lineages.  相似文献   

12.
Acipenseriformes hold an important place in the evolutionary history of bony fishes. Given their phylogenetic position as extant basal Actinopterygii, it is generally held that a thorough understanding of their morphology will greatly contribute to the knowledge of the evolutionary history and the origin of diversity for the major osteichthyan clades. To this end, we examined comparative developmental series from the pectoral girdle in Acipenser fulvescens, A. medirostris, A. transmontanus, and Scaphirhynchus albus to document, describe, and compare ontogenetic and allometric differences in the pectoral girdle. We find, not surprisingly, broad congruence between taxa in the basic pattern of development of the dermal and chondral elements of the pectoral girdle. However, we also find clear differences in the details of structure and development among the species examined in the dermal elements, including the clavicle, cleithrum, supracleithrum, posttemporal, and pectoral‐fin spine. We also find differences in the internal fin elements such as the distal radials as well as in the number of fin rays and their association with the propterygium. Further, there are clear ontogenetic differences during development of the dermal and chondral elements in these species and allometric variation in the pectoral‐fin spine. The characters highlighted provide a suite of elements for further examination in studies of the phylogeny of sturgeons. Determining the distribution of these characters in other sturgeons may aid in further resolution of phylogenetic relationships, and these data highlight the role that ontogenetic and comparative developmental studies provide in systematics. J. Morphol. 276:241–260, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The Monogenea, which is divided into two clades, namely the Monopisthocotylea and Polyopisthocotylea, is a highly diversified group of platyhelminth parasites that infest mainly actinopterygian and chondrichthyan fishes but also, to a lesser extent, freshwater sarcopterygian hosts. Euzetrema knoepffleri Combes, 1965 (Monogenea: Iagotrematidae), which is specific to the salamander Euproctus montanus Savi, 1838 is among the rare monopisthocotylean parasites infesting tetrapod hosts. We sequenced the complete 18S rRNA gene of this parasite to infer its phylogenetic position within the Monopisthocotylea. Our results provide a new insight for coevolutionary scenarios between monopisthocotyleans and gnathostomatan hosts. Indeed, the basal position of E. knoepffleri within a subgroup of the Monopisthocotylea which comprises two clusters that both include parasites of the Actinopterygii and Chondrichthyes, suggests a very old association between the Iagotrematidae and tetrapods. Furthermore, if we take into account a recent view of Gnathostomata evolution where bony and cartilaginous fishes are regarded as a monophyletic group, it could be argued that the Iagotrematidae arose very early, during the fish–tetrapod transition, as did the Polystomatidae, the only monogenean family of the Polyopisthocotylea that infests sarcopterygian hosts.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 727–734.  相似文献   

14.

Background  

During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.  相似文献   

15.
Living vertebrate diversity comprises hagfishes and lampreys (Cyclostomata), elasmobranchs and holocephalans (Chondrichthyes), and bony fish which include tetrapods (Osteichthyes). Based on dissections and an extensive comparative analysis, we provide an updated overview of the anatomy, homologies and evolution of cyclostome and chondrichthyan cephalic muscles, with osteichthyans as primary comparative taxa. The analysis also infers plesiomorphic conditions for vertebrates and gnathostomes. We follow a uniform myological terminology for the Gnathostomata to demonstrate that the last common ancestor of extant vertebrates probably had a single intermandibularis and other mandibular muscles (labial muscles), some constrictores hyoidei and branchiales, and epibranchial and hypobranchial muscle sheets. The division of the cucullaris into levatores arcuum branchialium and protractor pectoralis is an osteichthyan synapomorphy and reflects an evolutionary trend towards a greater separation between the head and pectoral girdle that culminated in the formation of the tetrapod neck. Hence, this paper addresses a long‐standing, central issue regarding vertebrate comparative anatomy. It thus provides a valuable basis for future evolutionary, developmental and functional studies of vertebrates and/or of specific vertebrate subgroups/model organisms. © 2014 The Linnean Society of London  相似文献   

16.
The aim of this short review is to emphasize the richness of the comparative histological studies on both fossil and extant Osteichthyes. Some selected examples in both Sarcopterygii (excluding tetrapods) and Actinopterygii show how it is possible to improve our knowledge on bone biology of extinct species but also to obtain new data on their palaeobiology or on their paleobiogeography. After a brief survey of the organization of bony tissues in osteichthyes, we review some examples of skeletal peculiarities in the following extinct and extant taxa: the histological structure of polypterid scales that suggests a hypothesis on the possible age and the biogeographical history of this basal actinopterygian taxon; the ossified lung of the fossil coelacanthids, with a discussion on its potential function; the histological organization of the sarcopterygian derived elasmoid scales (of Eusthenopteron sp., Latimeria sp. and Neoceratodus sp.). These comparative palaeohistological and histological data provide the basis of a general discussion of the evolutionary trends of bony tissues and their derivatives in Osteichthyes.  相似文献   

17.

Background

The facial musculature is a remarkable anatomical complex involved in vital activities of fishes, such as food capture and gill ventilation. The evolution of the facial muscles is largely unknown in most major fish lineages, such as the Actinopterygii. This megadiverse group includes all ray-finned fishes and comprises approximately half of the living vertebrate species. The Polypteriformes, Acipenseriformes, Lepisosteiformes, Amiiformes, Elopiformes, and Hiodontiformes occupy basal positions in the actinopterygian phylogeny and a comparative study of their facial musculature is crucial for understanding the cranial evolution of bony fishes (Osteichthyes) as a whole.

Results

The facial musculature of basal actinopterygians is revised, redescribed, and analyzed under an evolutionary perspective. We identified twenty main muscle components ontogenetically and evolutionarily derived from three primordial muscles. Homologies of these components are clarified and serve as basis for the proposition of a standardized and unifying myological terminology for all ray-finned fishes. The evolutionary changes in the facial musculature are optimized on the osteichthyan tree and several new synapomorphies are identified for its largest clades, including the Actinopterygii, Neopterygii, and Teleostei. Myological data alone ambiguously support the monophyly of the Holostei. A newly identified specialization constitutes the first unequivocal morphological synapomorphy for the Elopiformes. The myological survey additionally allowed a reinterpretation of the homologies of ossifications in the upper jaw of acipenseriforms.

Conclusions

The facial musculature proved to be extremely informative for the higher-level phylogeny of bony fishes. These muscles have undergone remarkable changes during the early radiation of ray-finned fishes, with significant implications for the knowledge of the musculoskeletal evolution of both derived actinopterygians and lobe-finned fishes (Sarcopterygii).
  相似文献   

18.
19.
The postcranial system is composed of the axial and appendicular skeletons. The axial skeleton, which consists of serially repeating segments commonly known as vertebrae, protects and provides leverage for movement of the body. Across the vertebral column, much numerical and morphological diversity can be observed, which is associated with axial regionalization. The present article discusses this basic diversity and the early developmental mechanisms that guide vertebral formation and regionalization. An examination of vertebral numbers across the major vertebrate clades finds that actinopterygian and chondrichthyan fishes tend to increase vertebral number in the caudal region whereas Sarcopterygii increase the number of vertebrae in the precaudal region, although exceptions to each trend exist. Given the different regions of axial morphospace that are occupied by these groups, differential developmental processes control the axial patterning of actinopterygian and sarcopterygian species. It is possible that, among a variety of factors, the differential selective regimes for aquatic versus terrestrial locomotion have led to the differential use of axial morphospace in vertebrates.  相似文献   

20.

Background  

H ox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号