首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstream capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models.  相似文献   

2.
1. The disparity of the spatial domains used by predators and prey is a common feature of many terrestrial avian and mammalian predatory interactions, as predators are typically more mobile and have larger home ranges than their prey. 2. Incorporating these realistic behavioural features requires formulating spatial predator-prey models having local prey mortality due to predation and its spatial aggregation, in order to generate a numerical response at timescales longer than the local prey consumption. Coupling the population dynamics occurring at different spatial scales is far from intuitive, and involves making important behavioural and demographic assumptions. Previous spatial predator-prey models resorted to intuition to derive local functional responses from non-spatial equivalents, and often involve unrealistic biological assumptions that restrict their validity. 3. We propose a hierarchical framework for deriving generic models of spatial predator-prey interactions that explicitly considers the behavioural and demographic processes occurring at different spatial and temporal scales. 4. The proposed framework highlights the circumstances wherein static spatial patterns emerge and can be a stabilizing mechanism of consumer-resource interactions.  相似文献   

3.
Summary A hybrid experimental design combining laboratory populations and computer simulation was used to study the relative influence of spatial heterogeneity, genetic feedback and predator foraging behavior on the stability of predator-prey systems. Houseflies, Musca domestica, maintained in multicellular or single-cell population cages were used as predator feeding on chemical solutions contained in small glass vials. Feeding, mortality and dispersal of the predators occurred within the cages, but reproduction of the predators and prey as well as dispersal of the prey was controlled by a computer program. Genetic change in the prey was determined partially by the computer model which associated chemical solutions with particular genotypes, and partially by the predators, whose foraging behavior influenced the fitness of each genotype. Three treatments were compared: a genetically polymorphic prey population in a spatially homogeneous environment, a monomorphic prey population in a heterogeneous environment, and a polymorphic prey population in a heterogeneous environment. With the parameters used, the latter treatment, involving an interaction between spatial heterogeneity and genetic feedback, was the most stable. Without genetic feedback in the prey, spatial heterogeneity was insufficient to overcome the destabilizing influence of the predator's foraging behavior. Without spatial heterogeneity, genetic feedback was insufficient to overcome the destabilizing effect of preferential feeding by the predators on palatable prey. The prey population evolved sufficient resistance to cause extinction of the predator population. The results support the hypothesis that population regulation by genetic feedback in predator-prey systems is less likely when predators feed preferentially on susceptible prey and that spatial heterogeneity, by decreasing the relative accessibility of susceptible prey and hence altering the predator's foraging strategy, may increase the likelihood of regulation through genetic feedback.  相似文献   

4.
A predator-prey model with overlapping generations is proposed, assuming delayed population growth and a new estimate of the number of predators starving to death. Differences among simulation results caused by manipulation of values of coefficients are discussed. The main results are: (i) although conceptually predator density is not associated so closely with prey density as in several other models (mainly by mortality of predators and not by their natality), the model shows only a few changes in its dynamic properties. (ii) Both the capacity of predators to resist starvation and the carrying capacity of prey have an important influence on the stability of the simulation results. (iii) Stable limit cycles were found without assuming influences of carrying capacity.  相似文献   

5.
The effect of varying habitat dimensionality on the dynamics of a model predator-prey system is examined using an individual-based simulation. The general results are that in one dimension fluctuations in abundance of prey and predators occur over a large range of spatial scales (extinctions occur over many spatial scales). In two dimensions (and low mobilities of prey and predators) the dynamics become more predictably periodic at local scales and constant at larger scales due to statistical stabilization. In three dimensions, the model can become “phase-locked” with prey and predators displaying oscillations in abundance over large spatial scales.  相似文献   

6.
1. Functional response models (e.g. Holling's disc equation) that do not take the spatial distributions of prey and predators into account are likely to produce biased estimates of predation rates. 2. To investigate the consequences of ignoring prey distribution and predator aggregation, a general analytical model of a predator population occupying a patchy environment with a single species of prey is developed. 3. The model includes the density and the spatial distribution of the prey population, the aggregative response of the predators and their mutual interference. 4. The model provides explicit solutions to a number of scenarios that can be independently combined: the prey has an even, random or clumped distribution, and the predators show a convex, sigmoid, linear or no aggregative response. 5. The model is parameterized with data from an acarine predator-prey system consisting of Phytoseiulus persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show that if the predators do not show an aggregative response it will always be an advantage to the prey to adopt a patchy distribution. On the other hand, if the predators are capable of responding to the distribution of prey, then it will be an advantage to the prey to be evenly distributed when its density is low and switch to a more patchy distribution when its density increases. The effect of mutual interference is negligible unless predator density is very high. 8. The model shows that prey patchiness and predator aggregation in combination can change the functional response at the population level from type II to type III, indicating that these factors may contribute to stabilization of predator-prey dynamics.  相似文献   

7.
A detailed sensitivity analysis of a model of a predator-prey system comprised of Tetranychus urticae and Phytoseiulus persimilis was performed. The aim was to assess the relative importance of the life history parameters of both species, the functional response, and the components of the numerical response. In addition, the impact of the initial predator-prey ratio and the timing of predator introduction were tested. Results indicated that the most important factors in the system were relative rates of predator and prey development, the time of onset of predator oviposition, and the mode of the predator's oviposition curve. The total oviposition of the predator, the effect of prey consumption on predator oviposition, and predator searching were important under some conditions. Factors of moderate importance were the adult female predator's functional response, total prey oviposition, the mode of the prey's oviposition curve, abiotic mortality of the pre-adult predator, and the effect of prey consumption on predator development and on the immature predator's mortality. Factors of least importance were the variances of the predator's and prey's oviposition curves, the abiotic mortality of the adult predator, the abiotic mortality of the pre-adult and adult prey, the functional response of the nymphal and adult male predators, and the effect of prey consumption on adult predator mortality. The sex ratios had little effect, except when the proportion of female predators was very low. The initial predator-prey ratio and time of predator introduction had significant impacts on system behavior, though the patterns of impact were different.  相似文献   

8.
刘志广 《生态学报》2018,38(8):2958-2964
建立了一个显式含有空间庇护所的两斑块Leslie-Gower捕食者-食饵系统。假设只有食饵种群在斑块间以常数迁移率迁移,且在每个斑块上食饵间的迁移比局部捕食者-食饵相互作用发生的时间尺度要快。利用两个时间尺度,可以构建用来描述所有斑块总的食饵和捕食者密度的综合系统。数学分析表明,在一定条件下,存在唯一的正平衡点,并且此平衡点全局稳定。进一步,捕食者的数量随着食饵庇护所数量增加而降低;在一定条件下,食饵的数量随着食饵庇护所数量增加先增加后降低,在足够强的庇护所强度下,两物种出现灭绝。对比以往研究,利用显式含有和隐含空间庇护所的数学模型所得结论不一致,这意味着在研究庇护所对捕食系统种群动态影响时,空间结构可能起着重要作用。  相似文献   

9.
1.?Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2.?Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3.?Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4.?Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.  相似文献   

10.
A predator-prey metapopulation model with two identical patches and only migration of the predator is investigated. Local predator-prey interaction is described by the so-called Rosenzweig-MacArthur model, while the migration term of the predator is put in a nonlinear form, which is derived by extending the Holling time budget argument to migration. In particular, a dimensionless parameter theta is introduced to quantify the migration tendency of predators while they are handling their prey, which gives rise to a family of models connecting two extremes: predators have no inclination to migrate while handling prey (theta = 0) and standard diffusion (theta = 1). Various aspects of the model, including changes in the number and the stability of equilibria and limit cycles, are investigated. We then focus on the key question: "Does spatial structure lead to a substantial damping of the violent oscillations exhibited by many predator-prey models?". It is known that the answer is "yes" if one adopts standard diffusion (theta = 1). However, we present substantial evidence that the answer is "no" if one takes theta = 0. We conclude that the migration submodel is an important constituent of a spatial predator-prey model and that the issue deserves scrutiny, both experimentally and theoretically.  相似文献   

11.
Ian Johnstone  Ken Norris 《Oikos》2000,89(1):146-154
Models that describe the dispersion patterns of predators between a series of patches that vary in prey density frequently assume that predators, in the absence of interference, will aggregate in patches with the highest prey density, at any point in time. This assumption has important implications for patterns of prey mortality, and the extent to which prey mortality is density dependent. In natural predator-prey systems, it is likely that environmental factors interact with spatial variation in prey density to influence the aggregative response of predators. We show data consistent with this idea on a population of overwintering oystercatchers foraging on cockles. There was no evidence that birds aggregated in patches with the highest biomass density of cockles. The biomass density of cockles was highest in muddy patches at the start of winter, and birds aggregated in patches that switched from being muddy at the start of winter to being sandy at some point during the winter. We argue that sediment type influences foraging costs experienced by the birds, so birds avoid feeding in muddy patches unless the fine sediment is removed from a patch, as happens during winter storms. When this happens a high biomass density of cockles suddenly becomes available and the birds aggregate in such patches. The rate of biomass loss was greatest in patches used intensively by birds for feeding, suggesting that the birds' aggregative response influences cockle mortality. We discuss the implications of our results for ideal free models.  相似文献   

12.
Hyperpredation refers to an enhanced predation pressure on a secondary prey due to either an increase in the abundance of a predator population or a sudden drop in the abundance of the main prey. This scarcely documented mechanism has been previously studied in scenarios in which the introduction of a feral prey caused overexploitation of native prey. Here we provide evidence of a previously unreported link between Emergent Infectious Diseases (EIDs) and hyperpredation on a predator-prey community. We show how a viral outbreak caused the population collapse of a host prey at a large spatial scale, which subsequently promoted higher-than-normal predation intensity on a second prey from shared predators. Thus, the disease left a population dynamic fingerprint both in the primary host prey, through direct mortality from the disease, and indirectly in the secondary prey, through hyperpredation. This resulted in synchronized prey population dynamics at a large spatio-temporal scale. We therefore provide evidence for a novel mechanism by which EIDs can disrupt a predator-prey interaction from the individual behavior to the population dynamics. This mechanism can pose a further threat to biodiversity through the human-aided disruption of ecological interactions at large spatial and temporal scales.  相似文献   

13.
A hierarchy of scales is introduced to the spatially heterogeneous Lotka-Volterra predator-prey diffusion model, and its effects on the model's spatial and temporal behavior are studied. When predators move on a large scale relative to prey, local coupling of the predator-prey interaction is replaced by global coupling. Prey with low dispersal ability become narrowly confined to the most productive habitats, strongly amplifying the underlying spatial pattern of the environment. As prey diffusion rate increases, the prey distribution spreads out and predator abundance declines. The model retains neutrally stable Lotka-Volterra temporal dynamics: different scales of predator and prey dispersal do not stabilize the interaction. The model predicts that, for prey populations that are limited by widely ranging predators, species with low dispersal ability should be restricted to discrete high density patches, and those with greater mobility should be more uniformly distributed at lower density.  相似文献   

14.
A reaction-diffusion model describing the evolutionary dynamics of a food-web was constructed. In this model, predator-prey relationships among organisms were determined by their position in a two-dimensional phenotype space defined by two traits: as prey and as predator. The mutation process is expressed with a diffusion process of biomass in the phenotype space. Numerical simulation of this model showed co-evolutionary dynamics of isolated phenotypic clusters, including various types of evolutionary branching, which were classified into branching as prey, branching as predators, and co-evolutionary branching of both prey and predators. A complex food-web develops with recursive evolutionary branching from a single phenotypic cluster. Biodiversity peaks at the medium strength of the predator-prey interaction, where the food-web is maintained at medium biomass by a balanced frequency between evolutionary branching and extinction.  相似文献   

15.
An acarine predator-prey system in a circular stepping-stone environment was described with a simulation model to elucidate the factors responsible for persistence of the system. The main assumptions in this model are: (1) The prey are inevitably eliminated in patches in which predators exist. (2) The density of prey declines and becomes extinct by plant defoliation due to feeding by prey. In this regard this model is different from the models which mimickedHuffaker's (1958) experiments and assumed stable plant-prey relations. Analyses showed that the critical factor in persistence of the predator-prey system was the plant-prey relations, at any combination of other parameters involved in the model. The predator-prey system did not persist long under the unstable relationship of prey and plant. Otherwise the system persisted longer especially when I used a larger number of patches, a larger amount of plant in each patch, and long-distance-migrations of the prey. In particular, frequent emigration of the prey regardless of plant conditions was most effective.  相似文献   

16.
Effects of spatial grouping on the functional response of predators.   总被引:11,自引:0,他引:11  
A unified mechanistic approach is given for the derivation of various forms of functional response in predator-prey models. The derivation is based on the principle of mass action but with the crucial refinement that the nature of the spatial distribution of predators and/or opportunities for predation are taken into account in an implicit way. If the predators are assumed to have a homogeneous spatial distribution, then the derived functional response is prey-dependent. If the predators are assumed to form a dense colony or school in a single (possibly moving) location, or if the region where predators can encounter prey is assumed to be of limited size, then the functional response depends on both predator and prey densities in a manner that reflects feeding interference between predators. Depending on the specific assumptions, the resulting functional response may be of Beddington-DeAngelis type, of Hassell-Varley type, or ratio-dependent.  相似文献   

17.
Predator-prey theory began with aspatial models that assumed organisms interacted as if they were "well-mixed" particles that obey the laws of mass action, but it has become clear that both the spatial and individual nature of many organisms can change how the dynamics of such systems function. Here I examine how localized consumption of prey by predators changes the dynamics of predator-prey systems; I use an individual-based simulation of the Rosenzweig-MacArthur model in implicit space and its mean-field approximation. In combination with limited movement, localized consumption makes the predator-prey dynamics more stable than the comparable "well-mixed" Rosenzweig-MacArthur model. Using a spatial correlation, one can directly compare a simplified version of the individual-based model with the Rosenzweig-MacArthur model. While this comparison allows the changes in the dynamics to be captured by the "well-mixed" Rosenzweig-MacArthur model, the parameters of the functional response are now dependent on the movement parameters, and so the functional response must be estimated statistically from the dynamics of the individual-based model. Yet this implies that aspatial models may work in a scale-specific fashion for spatial systems. Unlike many recent spatial models, the localized consumption and limited movement in the model presented here cannot produce coherent spatial patterns and do not depend on a patchy structure, as found in metapopulation models. Instead, the individual nature of the interactions creates a diffusion-limited reaction, which appears closer to a form of ephemeral refuge.  相似文献   

18.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presumed by metapopulation theory. The main question I address is when synchronous and when asynchronous dynamics arise. Contrary to biological intuition, for very small migration rates the oscillations always synchronize. For intermediate migration rates the synchronous oscillations are unstable and I found periodic, quasi-periodic, and intermittently chaotic attractors with asynchronous dynamics. For large predator migration rates, attractors in the form of equilibria or limit cycles exist in which one of the patches contains no prey. The dynamical behavior of the system is described using bifurcation diagrams. The model shows that spatial predator-prey populations can be regulated through the interplay of local dynamics and migration.  相似文献   

19.
A spatial predator-prey process is constructed in which predators and their prey may migrate between distinct neighbouring sites. We examine the consequence of introducing a sudden influx of predators into a previously predator-free environment, obtaining expressions for both the velocity and waveform of predator propagation. A general solution is then derived for predator-prey behaviour when a system previously in equilibrium is perturbed. All the techniques developed are potentially of general application.  相似文献   

20.
In well-mixed populations of predators and prey, natural selection favors predators with high rates of prey consumption and population growth. When spatial structure prevents the populations from being well mixed, such predators may have a selective disadvantage because they do not make full use of the prey's growth capacity and hence produce fewer propagules. The best strategy then depends on the degree to which predators can monopolize the exploitation of local prey populations, which in turn depends on the spatial structure, the number of migrants, and, in particular, the stochastic nature of the colonization process. To analyze the evolutionary dynamics of predators in a spatially structured predator-prey system, we performed simulations with a metapopulation model that has explicit local dynamics of nonpersistent populations, keeps track of the number of emigrants entering the migration pool, assumes individuals within local populations as well as within the migration pool to be well mixed, and takes stochastic colonization into account. We investigated which of the predator's exploitation strategies are evolutionarily stable and whether these strategies minimize the overall density of prey, as is the case in Lotka-Volterra-type models of competitive exclusion. This was analyzed by pairwise invasibility plots based on short-term simulations and tested by long-term simulation experiments of competition between resident and mutant predator-types that differed in one of the following parameters: the prey-to-predator conversion efficiency, the per capita prey consumption rate, or the per capita emigration rate from local populations. In addition, we asked which of these three strategies are most likely to evolve. Our simulations showed that under selection for conversion efficiency the predator-prey system always goes globally extinct yet persists under selection for consumption or emigration rates and that the evolutionarily stable (ES) exploitation strategies do not maximize local population growth rates. The most successful exploitation strategy minimizes the overall density of prey but does not make it settle exactly at the minimum. The system did not settle at the point where the mean time to co-invasion (i.e., immigration of a second predator in a local prey population) equals the mean local interaction time (an idea borne out from studies on host exploitation strategies in host-pathogen systems) but rather where the mean time to co-invasion was larger. The ES exploitation strategies represent more prudent strategies than the ones that minimize prey density. Finally, we show that-compared to consumption-emigration is a more likely target for selection to achieve prudent exploitation and that prudent exploitation strategies can evolve only provided the prey-to-predator conversion efficiency is subject to constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号