首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A crystalline complex of yeast tRNAphe and dirhodium tetraacetate (DRTA) was prepared and its X-ray structure determined. The bifunctional DRTA forms an intermolecular crosslink between the N(1) position of adenine A36 in the anticodon triplet and possibly a ribose hydroxyl group of residue A76 at the 3′ terminus of a symmetry related tRNA molecule. The rhodium complex apparently shows a preference for binding to the N(l) position of adenine in a single strand region of the tRNA molecule.  相似文献   

2.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

3.
4.
Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of adenine while the cytosine peak, initially relatively narrow at low temperature, sharpened less dramatically. Comparison of spectra at 26.16 MHz and 67.9 MHz showed that the peak widths for folded tRNA were determined largely by chemical shift non-equivalence. T2 T2 measurements suggested that intrinsic line widths of most cytosine C2 peaks were 4 Hz and 2-3 Hz for uracil. Adenine C2 with a directly bonded proton had resonances of about 40 Hz line width. T1 values were measured for C2 of adenine and the ribose carbons of tRNA. Consideration of dipolar relaxation and chemical shift anisotrophy led to a calculated rotational correlation time of 1.6 +/- 0.4 x 10(-8) sec for the adenines and 1.3 +/- 0.3 x 10(-8) sec for the ribose carbons.  相似文献   

5.
The crystal structure of the title compound, a modified base of tRNA has been determined from three-dimensional x-ray diffraction data. The plane of the isopentenyl side chain is rotated 91° from the plane through the adenine system and the methyl thio group. The substituents on the adenine ring prevent N(1) from hydrogen bonding; the molecule exhibits instead two types of pairing arrangements, one of which is compatible with the Hoogsteen or “reversed” Hoogsteen pairing scheme.  相似文献   

6.
Primary structure of an unusual glycine tRNA UGA suppressor.   总被引:6,自引:1,他引:5       下载免费PDF全文
We have determined the nucleotide sequences of two UGA-suppressing glycine transfer RNAs. The suppressor tRNAs were previously shown to translate both UGA and UGG and to have arisen as a consequence of mutation in glyT, the gene for the GGA/G-reading glycine tRNA of Escherichia coli. In each mutant tRNA, the primary sequence change was the substitution of adenine for cytosine in the 3' position of the anticodon. In addition, a portion of mutant glyT tRNA molecules contained N6-(delta 2-isopentenyl)-2-thiomethyl adenine adjacent to the 3' end of the anticodon (nucleotide 37). The presence or absence of this hypermodification may be a determinant in some of the biological properties of the mutant tRNA.  相似文献   

7.
An X-ray diffraction study of a zinc(II) complex of tRNAPhe from yeast reveals the presence of five zin-binding sites on the tRNA molecule. Two of the cooperatively bound Mg2+ in the native tRNA structure are replaced by Zn2+. The remaining sites involve direct coordination of zinc to the N7 position of tRNA guanine bases, G15, G43 and G45. Thus, zinc displays a high specificity for binding to guanine bases in purine-purine sequences.  相似文献   

8.
The aminoacylation of transfer RNA is a key step of translation since it relates amino acids to anticodons. To understand how the tyrosyl-tRNA synthetase (TyrTS) from Bacillus stearothermophilus recognizes tRNA(Tyr), we constructed 14 new mutant TyrTS by site-directed mutagenesis, determined their kinetic properties and used these and previous data to construct a detailed structural model of the complex between TyrTS and the acceptor arm of tRNA(Tyr). In the model Arg207, Lys208, Asn 146 and Glu 152 interact with phosphate groups. A contact between guanine 1 and Trp 196 is unspecific. Adenine 73, the fourth base from the 3' end, is specifically recognized through Trp 196 and the main-chain carbonyl of Ala150. At the active site, adenine 76 might interact with Lys82 and Arg86. There is a tight complementarity in shape between the tRNA and the synthetase. TyrTS and tRNA(Tyr) form an additional contact, in the vicinity of adenine 73, when their complex goes from the initial state to the transition state. The rate of aminoacylation, through the precise recognition of adenine 73, could thus be an important factor of discrimination by TyrTS among tRNAs.  相似文献   

9.
Rat brain cortices from young animals contain large amounts of tRNA (adenine-1)methyltransferase(s). The enzyme(s) can methylate E. coli tRNA and to a lower degree yeast tRNA. Among yeast tRNA species which can be methylated we have selected tRNAAsp as a substrate for the brain enzyme. The digestions of in vitro methylated [Me-3H]-tRNAAsp with pancreatic and/or T1 ribonucleases followed by chromatographies on DEAE-cellulose, 7 M urea, suggested that the methylation of tRNAAsp occurred at a single position within the D-loop. Further digestion of the radioactive oligonucleotide recovered after DEAE-cellulose chromatography by phosphomonoesterase and snake venom phosphodiesterase enzymes followed by bidimensional thin layer chromatography enabled us to determine the location of the adenine residue which becomes methylated by the brain enzyme. This one resulted to be the adenine 14 in the D-loop of yeast tRNAAsp.  相似文献   

10.
In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein–tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.  相似文献   

11.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

12.
Guo Q  Zhou W  Too HM  Li J  Liu Y  Bartlam M  Dong Y  Wong KB  Shaw PC  Rao Z 《Protein engineering》2003,16(6):391-396
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) which possesses rRNA N-glycosidase activity. In recent years, its immunomodulatory, anti-tumor and anti-HIV properties have been revealed. Here we report the crystal structures of several E85 mutant TCS complexes with adenosine-5'-monophosphate (AMP) and adenine. In E85Q TCS/AMP and E85A TCS/AMP, near the active site of the molecule and parallel to the aromatic ring of Tyr70, an AMP molecule is bound to the mutant without being hydrolyzed. In the E85R TCS/adenine complex, the hydrolyzed product adenine is located in the active pocket where it occupies a position similar to that in the TCS/NADPH complex. Significantly, AMP is bound in a position different to that of adenine. In comparison with these structures, we suggest that there are at least two subsites in the active site of TCS, one for initial substrate recognition as revealed by the AMP site and another for catalysis as represented by the NADPH site. Based on these complex structures, the function of residue 85 and the mechanism of catalysis are proposed.  相似文献   

13.
The 3'-terminal -A-C-C-A sequence of yeast tRNA(Phe) has been modified by replacing either adenosine-73 or adenosine-76 with the photoreactive analogue 8-azidoadenosine (8N3A). The incorporation of 8N3A into tRNA(Phe) was accomplished by ligation of 8-azidoadenosine 3',5'-bisphosphate to the 3' end of tRNA molecules which were shortened by either one or four nucleotides. Replacement of the 3'-terminal A76 with 8N3A completely blocked aminoacylation of the tRNA. In contrast, the replacement of A73 with 8N3A has virtually no effect on the aminoacylation of tRNA(Phe). Neither substitution hindered binding of the modified tRNAs to Escherichia coli ribosomes in the presence of poly(U). Photoreactive tRNA derivatives bound noncovalently to the ribosomal P site were cross-linked to the 50S subunit upon irradiation at 300 nm. Nonaminoacylated tRNA(Phe) containing 8N3A at either position 73 or position 76 cross-linked exclusively to protein L27. When N-acetylphenylalanyl-tRNA(Phe) containing 8N3A at position 73 was bound to the P site and irradiated, 23S rRNA was the main ribosomal component labeled, while smaller amounts of the tRNA were cross-linked to proteins L27 and L2. Differences in the labeling pattern of nonaminoacylated and aminoacylated tRNA(Phe) containing 8N3A in position 73 suggest that the aminoacyl moiety may play an important role in the proper positioning of the 3' end of tRNA in the ribosomal P site. More generally, the results demonstrate the utility of 8N3A-substituted tRNA probes for the specific labeling of ribosomal components at the peptidyltransferase center.  相似文献   

14.
To understand the relationship between tRNA architecture and specific aminoacylation by aminoacyl-tRNA synthetases, we performed kinetic assays of Escherichia coli tRNA(Pro) molecules containing single deoxynucleotide substitutions. We identified an important 2'-hydroxyl group at position U8 (of 22 positions probed). Chemical modification studies showed that this 2'-hydroxyl interacts with either the N1 or the exocyclic amine of G46 in a hydrogen bonding interaction that contributes 1.8 kcal/mol to the free energy of activation for aminoacylation. Molecular modeling of tRNA(Pro) supports the existence of this interaction. This is the first study to identify a specific ribose 2'-hydroxyl-base interaction in the core region of a tRNA molecule that makes a thermodynamically significant contribution to aminoacylation.  相似文献   

15.
Inosine (I) at position 34 (wobble position) of tRNA is formed by the hydrolytic deamination of a genomically encoded adenosine (A). The enzyme catalyzing this reaction, termed tRNA A:34 deaminase, is the heterodimeric Tad2p/ADAT2.Tad3p/ADAT3 complex in eukaryotes. In budding yeast, deletion of each subunit is lethal, indicating that the wobble inosine tRNA modification is essential for viability; however, most of its physiological roles remain unknown. To identify novel cell cycle mutants in fission yeast, we isolated the tad3-1 mutant that is allelic to the tad3(+) gene encoding a homolog of budding yeast Tad3p. Interestingly, the tad3-1 mutant cells principally exhibited cell cycle-specific phenotype, namely temperature-sensitive and irreversible cell cycle arrest both in G(1) and G(2). Further analyses revealed that in the tad3-1 mutant cells, the S257N mutation that occurred in the catalytically inactive Tad3 subunit affected its association with catalytically active Tad2 subunit, leading to an impairment in the A to I conversion at position 34 of tRNA. In tad3-1 mutant cells, the overexpression of the tad3(+) gene completely suppressed the decreased tRNA inosine content. Notably, the overexpression of the tad2(+) gene partially suppressed the temperature-sensitive phenotype and the decreased tRNA inosine content, indicating that the tad3-1 mutant phenotype is because of the insufficient I(34) formation of tRNA. These results suggest that the wobble inosine tRNA modification is essential for cell cycle progression in the G(1)/S and G(2)/M transitions in fission yeast.  相似文献   

16.
The three-dimensional structure of a complex between the dodecanucleotide d(CGCGAATTCGCG) and the anti-trypanocidal drug berenil, has been determined to a resolution of 2.5 A. The structure has been solved by molecular replacement and refined to an R factor of 0.177. A total of 49 water molecules have been located. The drug is bound at the 5'-AAT-3' region of the oligonucleotide. At one end of the drug the amidinium group is in hydrogen-bonded contact with N3 of the adenine base complementary to the thymine of the AAT. The other amidinium group does not make direct interactions with the DNA. Instead, a water molecule mediates between them. This is in hydrogen-bonded contact with an amidinium nitrogen atom, N3 of the 5' end adenine base and the ring oxygen atom of an adjacent deoxyribose. Molecular mechanics calculations have been performed on this complex, with the drug at various positions along the sequence. These show that the observed position is only 0.8 kcal/mol higher in energy than the best position. It is suggested that there is a broad energy well in the AATT region for this drug, and that water molecules as well as the neighbouring sequence, will determine precise positioning. More general aspects of minor groove binding are discussed.  相似文献   

17.
The low-field 220-MHz proton nuclear magnetic resonance (NMR) spectra of four tRNA molecules, Escherichia coli tRNAPhe, tRNA1Val, and tRNAfMet1, and yeast tRNAPhe, at neutral and mildly acidic pH are compared. We find a net increase in the number of resonances contributing to the -9.9-ppm peak (downfield from sodium 4,4-dimethyl-4-silapentanesulfonate) in three of these tRNAs at pH 6, while tRNAfMet1 does not clearly exhibit this behavior. The increase in intensity at this resonance position is half-completed at pH 6.2 in the case of yeast tRNAPhe. An alteration at the 5'-phosphate terminus is not involved, since removal of the terminal phosphate does not affect the gain in intensity at -9.9 ppm. Based on a survey of the tertiary interactions in the four molecules, assuming that they possess tertiary structures like that of yeast tRNAPhe at neutral pH, we tentatively attribute this altered resonance in E. coli and yeast tRNAPhe to the protonation of the N3 of the adenine residue at position 9 which results in the stabilization of the tertiary triple A23-U12-A9. This intepretation is supported by model studies on the lowfield proton NMR spectrum of AN oligomers at acid pH, which reveal an exchanging proton resonance at -9.4 ppm if the chain length N greater than or equal to 6.  相似文献   

18.
Proton NMR studies are presented on the interaction of nonaminoacylated yeast tRNAPhe and elongation factor Tu X GTP from Bacillus stearothermophilis. From experiments in which transfer of magnetization is observed between proton spins of tRNA and the protein, it is concluded that complex formation takes place. Amino acid residues of the protein come into close contact with the base pair A5U68 and/or U52A62 of the acceptor T psi C limb of the tRNA molecule. From the line broadening of tRNA resonances, associated with complex formation, an association constant of 10(3)-10(4) M-1 is estimated. The NMR experiments do not monitor a significant conformational change of the tRNA molecule upon interaction with the protein. However, at times long after the onset of complex formation, spectral changes indicate that the upper part of the acceptor helix becomes distorted.  相似文献   

19.
1. The sites within the tRNA sequence of nucleosides methylated by the action of enzymes from mouse colon, rat kidney and tumours of these tissues acting on tRNA(Asp) from yeast and on tRNA(Glu) (2), tRNA(fMet) and tRNA(Val) (1) from Escherichia coli were determined. 2. The same sites in a particular tRNA were methylated by all of these extracts. Thus tRNA(Glu) (2) was methylated at the cytidine residue at position 48 and the adenosine residue at position 58 from the 5'-end of the molecule; tRNA(Asp) was methylated at the guanosine residue at position 26 from the 5'-end of the molecule; tRNA(fMet) was methylated at the guanosine residues 9 and 27, the cytidine residue 49 and the adenosine residue 59 from the 5'-end; tRNA(Val) (1) was methylated at the guanosine residue 10, the cytidine residue 48 and the adenosine residue 58 from the 5'-end. 3. All of these sites within the clover leaf structure of the tRNA sequence are occupied by a methylated nucleoside in some tRNA species of known sequence. It is concluded that methylation of tRNA from micro-organisms by enzymes from mammalian tissues in vitro probably does accurately represent the specificity of these enzymes in vivo. However, there was no evidence that the tumour extracts, which had considerably greater tRNA methylase activity than the normal tissues, had methylases with altered specificity capable of methylating sites not methylated in the normal tissues.  相似文献   

20.
Gel retardation analysis of E. coli M1 RNA-tRNA complexes.   总被引:5,自引:0,他引:5       下载免费PDF全文
We have analyzed complexes between tRNA and E. coli M1 RNA by electrophoresis in non-denaturing polyacrylamide gels. The RNA subunit of E. coli RNase P formed a specific complex with mature tRNA molecules. A derivative of the tRNA(Gly), endowed with the intron of yeast tRNA(ile) (60 nt), was employed to improve separation of complexed and unbound M1 RNA. Binding assays with tRNA(Gly) and intron-tRNA(Gly) as well as analysis of intron-tRNA/M1 RNA complexes on denaturing gels showed that one tRNA is bound per molecule of M1 RNA. A tRNA carrying a truncation as small as the 5'-nucleotide had a strongly reduced affinity to M1 RNA and was also a weak competitor in the cleavage reaction, suggesting that nucleotide +1 is a major determinant of tRNA recognition and that the thermodynamically stable tRNA-M1 RNA complex is relevant for enzyme function. Binding was shown to be dependent on the M1 RNA concentration in a cooperative fashion. Only a fraction of M1 RNAs (50-60%) readily formed a complex with intron-tRNA(Gly), indicating that distinct conformational subpopulations of M1 RNA may exist. Formation of the M1 RNA-tRNA(Gly), complex was very similar at 100 mM Mg++ and Ca++, corroborating earlier data that Ca++ is competent in promoting M1 RNA folding and tRNA binding. Determination of apparent equilibrium constants (app Kd) for tRNA(Gly) as a function of the Mg++ concentration supports an uptake of at least two additional Mg++ ions upon complex formation. At 20-30 mM Mg++, highest cleavage rates but strongly reduced complex formation were observed. This indicates that tight binding of the tRNA to the catalytic RNA at higher magnesium concentrations retards product release and therefore substrate turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号