首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food webs are usually regarded as snapshots of community feeding interactions. Here, we describe the yearly and cumulative structure of parasitoid–caterpillar food webs on soybean in central Argentina, analyzing parasitism rates and their variability in relation to parasitoid diversity and food web vulnerability in the system. Lepidoptera larvae were collected along four seasons from soybean crops and reared in laboratory to obtain and identify adults and parasitoids. Eleven species of defoliating Lepidoptera and ten parasitoid species were recorded. Food web statistics showed rather low annual variability, with most variation coefficients in the order of 0.20 and generality showing the most stable values. Parasitism showed the highest variability, which was independent of parasitoid diversity and food web vulnerability, although parasitism rates were negatively related to parasitoid richness. Our study highlights the need to consider food web structure and variability in order to understand the functioning of ecological communities in general and in extensive agricultural ecosystems in particular.  相似文献   

2.
Urbanisation may have detrimental effects on communities of parasitoids, affecting their species richness, abundance, and species dominance. Here we investigated the influence of the degree of urbanisation on parasitoid communities of Liriomyza commelinae (Frost) (Diptera: Agromyzidae), a leafminer of Commelina erecta L. (Commelinaceae), in the city of Córdoba, Argentina. To study changes in species richness, the specific composition of parasitic complexes and their degree of impact on the leafminer, 18 sampling sites from the centre to the outskirts of the city were selected and different variables indicative of urbanisation were quantified in each site. During January and February of 2005 and 2006, all mined leaves found in each plant patch were collected and the following variables were estimated: proportion of mined patches, abundance of the leafminer, total parasitoid species richness, total parasitism rates and parasitism due to the most abundant parasitoid species. The percentage of mined patches and leafminer abundance increased with urbanisation degree. Estimates of parasitoid species richness were not influenced by urbanisation degree but increased with species richness of mined plants. Changes in the specific composition of species along the urbanisation gradient were observed. Although parasitism by one of the species studied was higher in more urbanised sites of the city, the total parasitism rate of L. commelinae was not affected by urbanisation degree, species richness of mined plants or leafminer abundance. It appears that urbanisation benefits the herbivore species here studied but not through altering parasitoid activity. Changes in parasitoid community composition reflex dissimilar tolerance to environmental conditions displayed by different parasitoid species.  相似文献   

3.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

4.
Recent declines in biodiversity have increased interest in the link between biodiversity and the provision and sustainability of ecosystem services across space and time. We mapped the complex network of interactions between herbivores and parasitoids to examine the relationship between parasitoid species richness, functional group diversity and the provision of natural pest control services. Quantitative food webs were constructed for 10 organic and 10 conventional farms. Parasitoid species richness varied from 26 to 58 species and we found a significant positive relationship between parasitoid species richness and temporal stability in parasitism rates. Higher species richness was associated with lower variation in parasitism rate. A functional group analysis showed significantly greater parasitoid species complementarity on organic farms, with on average more species in each functional group. We simulated parasitoid removal to predict whether organic farms experienced greater robustness of parasitism in the face of local extinctions. This analysis showed no consistent differences between the organic and conventional farm pairs in terms of loss of pest control service. Finally, it was found that the different habitats that make up each farm do not contribute equally to parasitoid species diversity, and that hedgerows produced more parasitoid species, significantly more so on organic farms.  相似文献   

5.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   

6.
We have examined the effects of herbivore diversity on parasitoid community persistence and stability, mediated by nonspecific information from herbivore‐infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host and/or nonhost herbivores were present on Brassica oleracea leaves. Parasitoids were attracted by infochemicals from leaves containing nonhost herbivores. They spent considerable amounts of time on such leaves. Thus, when information from the plant is indistinct, herbivore diversity is likely to weaken interaction strengths between parasitoids and hosts. In four B. oleracea fields, all plants contained herbivores, often two or more species. We modelled parasitoid–herbivore communities increasing in complexity, based on our experiments and field data. Increasing herbivore diversity promoted the persistence of parasitoid communities. However, at a higher threshold of herbivore diversity, parasitoids became extinct due to insufficient parasitism rates. Thus, diversity can potentially drive both persistence and extinctions.  相似文献   

7.
《Acta Oecologica》2001,22(5-6):301-309
We examined the temporal community dynamics of leafminers (Agromyzidae: Diptera) and their mainly polyphagous parasitoids in a natural habitat from Central Argentina. Changes in community composition are shown by changes in dominant species and similarity coefficients. Abundance of leafminers was highest in winter, and was not related to their species richness. Abundance and species richness were correlated in the parasitoid community. Temporal variation in parasitoid diversity and abundance were positively correlated with species number and density in the host community. Apparent parasitism was greater when parasitoid species richness was high and parasitoid community dominance was low.  相似文献   

8.
Understanding the ways in which human environmental modifications affect biodiversity is a key challenge in conservation planning, pest control and evolutionary ecology. Parasitoid communities, particularly those associated with agricultural pests, may be susceptible to such modifications. We document here changes in the larval parasitoid communities of Ostrinia nubilalis--the main pest of maize--and its sibling species O. scapulalis, based on two historical datasets, one collected from 1921-1928 and the other from 2001-2005. Each of these datasets encompasses several years and large geographical areas and was based on several thousands/millions of host larvae. The 80-year interval between the two datasets was marked by a decrease in O. nubilalis parasitism to about two thirds its initial level, mostly due to a decrease in the rate of parasitism by hymenopterans. However, a well balanced loss and gain of species ensured that species richness remained stable. Conversely, O. scapulalis displayed stable rates of parasitism over this period, with a decline in the species richness of its parasitoid community. Rates of parasitism and species richness in regions colonized by O. nubilalis during the 1950s were one half to one third those in regions displaying long-term colonisation by this pest. During the recent human activity-driven expansion of its range, O. nubilalis has neither captured native parasitoids nor triggered parasite spill back or spill over.  相似文献   

9.
We compared the parasitoid communities associated with grass-feeding herbivores in Germany and Britain to examine geographical consistency in community composition and to test ecological characteristics of the plants and host insects that may explain variability in parasitoid community structure. The parasitoid communities of 16 chalcid wasps feeding on ten grass species were sampled between 1986 and 1989 at 4-11 sites per grass species in southwest Germany. The data were compared to published data from Great Britain, comprising 18 chalcid hosts on ten grass species sampled between 1980 and 1992 at 24 sites in Wales and England. Results showed that many conclusions drawn from patterns in Britain did not hold for Germany, emphasizing the need to repeat analyses in different geographical regions. The parasitoid communities of the Tetramesa hosts included on average 8.1 parasitoid species in Germany, while the British hosts supported only 4.1 parasitoids. The number of monophagous parasitoid species was similar in both areas (2.4 vs 3.2), but German host populations supported many more polyphagous species (5.1 vs 0.9). This difference reinforces the earlier conclusion that parasitoid communities in Britain are highly undersaturated. Increased numbers of parasitoid species in Germany did not result in increased parasitism rates, so the closer species packing was paralleled by reduced impact of each species. In Germany, percent parasitism (range: 5-74%) was closely correlated with log host density, explaining 90% of the variance, while in Great Britain, percent parasitism was less variable (range: 36-76%) and was not related to host density or other host or host plant characteristics. Gallers and non-gallers supported equal numbers of parasitoids in both Germany and Britain, offering support for neither the enemy hypothesis of the adaptive nature of plant galls nor for the finding that galls are often more susceptible to enemy attack than their non-galling relatives. Furthermore, gregarious Tetramesa hosts were not attacked by more parasitoid species than solitary hosts.  相似文献   

10.
Disentangling the mechanisms that maintain the stability of communities and ecosystem properties has become a major research focus in ecology in the face of anthropogenic environmental change. Dispersal plays a pivotal role in maintaining diversity in spatially subdivided communities, but only a few experiments have simultaneously investigated how dispersal and environmental fluctuation affect community dynamics and ecosystem stability. We performed an experimental study using marine phytoplankton species as model organisms to test these mechanisms in a metacommunity context. We established three levels of dispersal and exposed the phytoplankton to fluctuating light levels, where fluctuations were either spatially asynchronous or synchronous across patches of the metacommunity. Dispersal had no effect on diversity and ecosystem function (biomass), while light fluctuations affected both evenness and community biomass. The temporal variability of community biomass was reduced by fluctuating light and temporal beta diversity was influenced interactively by dispersal and fluctuation, whereas spatial variability in community biomass and beta diversity were barely affected by treatments. Along the establishing gradient of species richness and dominance, community biomass increased but temporal variability of biomass decreased, thus highest stability was associated with species-rich but highly uneven communities and less influenced by compensatory dynamics. In conclusion, both specific traits (dominance) and diversity (richness) affected the stability of metacommunities under fluctuating conditions.  相似文献   

11.
Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e., unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity-variability relations.  相似文献   

12.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

13.
Parasitoids play an important role in ecosystem functioning through their influence on herbivorous insect populations. Theoretical and experimental evidence suggest that increased species richness can enhance and stabilize ecosystem function. It is important to understand how richness‐driven functional relationships change across environmental gradients. We investigated how temperature affected the relationship between parasitoid richness and parasitism rate in a guild of gall‐parasitoids along an elevational gradient. We collected galls at 15 sites along five elevational gradients (between 762 m and 1145 m asl) on six occasions over a year. A total of 1902 insects, including 1593 parasitoids, were reared from 12 402 galls. Parasitism rate increased significantly with temperature on all sampling occasions, except December and February. We found a significant, positive richness–parasitism relationship. This relationship, however, was weaker at higher elevations which may be linked to decreased functional efficiency of parasitoids at lower temperatures. Temporal variability in parasitism rate and parasitoid richness were significantly related, regardless of temperature. A stable functional guild of this kind may provide a more reliable ecosystem service under environmental changes.  相似文献   

14.
Abstract 1. Over 3400 larvae of the polyphagous ground dwelling arctiid Grammia geneura were sampled and reared over seven generations in order to characterise its parasitoid assemblage and examine how and why this assemblage varies over time and space at a variety of scales.
2. The total parasitoid assemblage of 14 species was dominated both in diversity and frequency by relatively polyphagous tachinid flies.
3. Both the composition of the parasitoid assemblage and frequency of parasitism varied strikingly among and within sampling sites, seasons, and years.
4. Overall rates of parasitism increased consistently over the duration of caterpillar development.
5. Within sampling sites, parasitism rates were non-random with respect to habitat structure and caterpillar behaviour for the most abundant parasitoid species.
6. The large variability in parasitoid assemblage structure over space and time in this system may be a function of local host population abundance, habitat-specific parasitism, and indirect interactions between G. geneura and other Macrolepidoptera through shared oligophagous and polyphagous parasitoids.  相似文献   

15.
16.
Andreas Kruess 《Ecography》2003,26(3):283-290
The effects of local habitat and large-scale landscape factors on species diversity and species interactions were studied using the insect community in stems of the creeping thistle Cirsium arvense . Thistle abundance was higher in fallows than in crop fields and field margins, with fallows providing 67% of thistle abundance within 15 study areas on a landscape scale. Species richness of the herbivores was positively related with thistle abundance, parasitoid species richness was influenced by habitat type and was positively correlated with herbivore species richness. The abundance of herbivores and parasitoids was affected by local factors such as habitat type and host abundance, but also by landscape factors such as the percentage of non-crop area and the isolation of habitats. The infestation rate caused by the agromyzid Melanagromyza aeneoventris was positively related to percent non-crop area, whereas the parasitism rate of this fly increased with increasing habitat diversity on the landscape scale. For these two interactions and for total herbivore abundance, a scale-dependency of the landscape effects was found. The results emphasize that biological diversity and ecological functions within a plant-insect community are not only affected by local habitat factors but also by large-scale landscape characteristics. Hence, to improve future agri-environmental schemes for biodiversity conservation and biological control large-scale landscape effects and their scale-dependency should be considered.  相似文献   

17.
The study of ecological communities through time can reveal fundamental ecological processes and is key to understanding how natural and human pressures will affect biodiversity. Most studies of ecological communities through time consider only one or a few summary measures (e.g. species richness, total abundance), which might neglect important aspects of community structure or function. We studied temporal variation in several measures of species diversity, size diversity, and species composition in an intensively sampled bird community to determine whether different biodiversity measures change synchronously. We used a novel function regression model, which supports the study of diversity measures that are distributions (e.g. species abundance distributions) alongside measures that are scalar values (e.g. species richness). Most diversity measures changed predictably within years, but inter‐annual changes in size diversity and species composition were not reflected in species diversity. Within and among years, there was considerable variation in distributional measures that was not captured in scalar measures. Predictable variation within years probably was related to seasonal variation in weather patterns or food availability, but variation in size diversity among years probably resulted from stochastic changes in species composition. These results suggest that species and size diversity may be decoupled, and that inferences on scalar diversity measures might not reflect fundamental changes to community structure or function. Our method supports the inclusion of size‐based measures and distributional measures in ecological analyses, and broader uptake of our approach is likely to provide new insight into the processes structuring ecological communities, and inform the links between structure and function in ecological communities.  相似文献   

18.
Immigration rates of species into communities are widely understood to influence community diversity, which in turn is widely expected to influence the susceptibility of ecosystems to species invasion. For a given community, however, immigration processes may impact diversity by means of two separable components: the number of species represented in seed inputs and the density of seed per species. The independent effects of these components on plant species diversity and consequent rates of invasion are poorly understood. We constructed experimental plant communities through repeated seed additions to independently measure the effects of seed richness and seed density on the trajectory of species diversity during the development of annual plant communities. Because we sowed species not found in the immediate study area, we were able to assess the invasibility of the resulting communities by recording the rate of establishment of species from adjacent vegetation. Early in community development when species only weakly interacted, seed richness had a strong effect on community diversity whereas seed density had little effect. After the plants became established, the effect of seed richness on measured diversity strongly depended on seed density, and disappeared at the highest level of seed density. The ability of surrounding vegetation to invade the experimental communities was decreased by seed density but not by seed richness, primarily because the individual effects of a few sown species could explain the observed invasion rates. These results suggest that seed density is just as important as seed richness in the control of species diversity, and perhaps a more important determinant of community invasibility than seed richness in dynamic plant assemblages.  相似文献   

19.
Much work in ecology has focused on understanding how changes in community diversity and composition will affect the temporal stability of communities (the degree of fluctuations in community abundance or biomass over time). While theory suggests diversity and dominant species can enhance temporal stability, empirical work has tended to focus on testing the effect of diversity, often using synthetic communities created with high species evenness. We use a complementary approach by studying the temporal stability of natural plant communities invaded by a dominant exotic, Erodium cicutarium. Invasion was associated with a significant decline in community diversity and change in the identity of the dominant species allowing us to evaluate predictions about how these changes might affect temporal stability. Community temporal stability was not correlated with community richness or diversity prior to invasion. Following invasion, community stability was again not correlated with community richness but was negatively correlated with community diversity. Before and after invasion, community stability was positively correlated with the stability of the most dominant species in the community, even though the identity of the dominant species changed from a native (prior to invasion) to an exotic species. Our results demonstrate that invasion by a dominant exotic species may reduce diversity without negatively affecting the temporal stability of natural communities. These findings add support to the idea that dominant species can strongly affect temporal stability, independent of community diversity.  相似文献   

20.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号