首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and function of A1 adenosine receptors   总被引:5,自引:0,他引:5  
J Linden 《FASEB journal》1991,5(12):2668-2676
The A1 adenosine receptor is the best characterized of the widely distributed purinergic receptor family. The purified brain A1 receptor is a monomeric 35- to 36-kDa glycoprotein. A1 receptors can be clearly distinguished from A2 adenosine receptors on the basis of structure activity relationships with selective ligands. Recent structure activity data suggest that subtypes of A1 (A1a, A1b, and A3) and A2 (A2a and A2b) receptors may exist. A1 receptor-mediated responses are coupled via multiple pertussis toxin-sensitive GTP binding proteins (G proteins) to many different effectors in various tissues: adenylate cyclase, phospholipase C, Na+- Ca2+ exchange, Ca2+ channels, Cl- channels, and K+ channels. The formation of calcium-mobilizing inositol phosphates can either be enhanced or inhibited. In general, adenosine has been found to act in concert with other hormones or neurotransmitters in either an inhibitory or a stimulatory way. The myriad modulatory actions of adenosine suggest that: 1) adenosine may simultaneously produce multiple effects within the same cell; and 2) activation of A1 receptors may lead to either a decrease or an increase in the coupling of other receptors to their G proteins.  相似文献   

2.
Regulation of phosphoinositide-specific phospholipase C   总被引:7,自引:0,他引:7  
The receptors involved in the regulation of phospholipase C by hormones, neurotransmitters and other ligands have seven transmembrane-spanning hydrophobic regions (seven-helix motif) and no known enzymatic activity. Furthermore these receptors can be isolated as complexes with guanine nucleotide binding (G) proteins. Guanine nucleotides affect the binding of hormones that stimulate phospholipase C and it has been possible to see activation of GTPase activity in membranes upon addition of these ligands. Further indirect evidence for a Gp (p stands for phospholipase C activation) protein is the finding that in membranes agonist activation of phospholipase C requires the presence of GTP gamma S a non-hydrolyzable analog of GTP. Furthermore, fluoride is able to activate phospholipase C but its inhibition of phosphatidylinositol-4' kinase (PI-4' kinase) can interfere with efforts to demonstrate this in intact cells. There are four major isozymes of phospholipase C that have been cloned and sequenced. Recently it was found that phospholipase C-gamma as well as PI-3'-kinase are substrates for phosphorylation on tyrosine residues by the EGF and PDGF receptors. The PI-3' kinase is able to convert phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) but the function of this lipid is unknown since it is not a substrate for any known phospholipase C. While much has been learned about the structure and regulation of the phosphoinositide specific kinases and phosphodiesterase enzymes this is a relatively new field in which we can expect many advances during the next few years.  相似文献   

3.
Treatment of cultured bovine carotid artery endothelial cells with 0.1 µM human plasmin has been reported to induce a receptor-mediated short burst of arachidonate release, which is a pertussis toxin-sensitive and extracellular calcium-dependent reaction. Plasmin-induced calcium influx in cells was significantly inhibited by pretreatment with pertussis toxin, indicating that the former was coupled with a pertussis toxin-sensitive guanosine 5-triphosphate (GTP)-binding protein. Plasmin significantly induced the formation of lysophosphatidylcholine but not lysophosphatidylethanolamine. A cellular phospholipase A2 with an arachidonyl specificity at the sn-2 position of phosphatidylcholine, which required submicromolar calcium, was identified as a cytosolic phospholipase A2 by immunoblot analysis. By a cell-free enzyme activity assay and immunoblot analysis, plasmin was found to induce a translocation of the cytosolic phospholipase A2 from the cytosol to the membrane. Taken together, the results suggest that plasmin bound to its putative receptor and activated a GTP-binding protein coupled to calcium influx channel, followed by translocation and activation of cytosolic phospholipase A2 in endothelial cells.  相似文献   

4.
The human histamine H2-receptor (hH2R) couples to Gs-proteins to activate adenylyl cyclase and to Gq-proteins to activate phospholipase C, but phospholipase C activation has not consistently been observed. The aim of this study was to compare coupling of hH2R to insect and mammalian Gs- and Gq-proteins in Spodoptera frugiperda (Sf9) cells. Interaction of hH2R with mammalian G proteins was assessed with coexpressed proteins or receptor-Galpha fusion proteins that enhance coupling efficiency. hH2R efficiently coupled to insect Gs-proteins to activate adenylyl cyclase. However, hH2R poorly coupled to insect Gq-proteins as assessed by the lack of enhancement of histamine-stimulated steady-state GTP hydrolysis by regulators of G protein signaling (RGS proteins). In contrast, RGS-proteins efficiently enhanced GTP hydrolysis stimulated by the human platelet-activating factor receptor (PAFR) and the histamine H1-receptor (H1R) from man and guinea pig. The measurement of intracellular free Ca2+ concentration was not useful for studying receptor/Gq-protein coupling. hH2R also efficiently interacted with mammalian Gs-proteins, specifically with fused Gsalpha as assessed by guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-sensitive high-affinity agonist binding, agonist-stimulated [35S]GTPgammaS binding and adenylyl cyclase activation. In contrast, coupling of hH2R to coexpressed and fused mammalian Gqalpha was poor. However, our inability to reconstitute efficient coupling of PAFR and H1R to mammalian Gqalpha indicated that a large portion of the expressed G protein was functionally inactive. Taken together, our data show that hH2R couples more efficiently to insect cell Gs-proteins than to insect cell Gq-proteins. Unfortunately, there are significant limitations in the usefulness of Sf9 cells for comparing the coupling of receptors to mammalian Gs- and Gq-proteins and assessing Gq-mediated activation of effector systems.  相似文献   

5.
Mast cells are activated by Ag-induced clustering of IgE bound to FcepsilonRI receptors or by basic secretagogues that stimulate pertussis toxin-sensitive heterotrimeric G proteins. The cell response includes the secretion of stored molecules, such as histamine, through exocytosis and of de novo synthesized mediators, such as arachidonate metabolites. The respective roles of G proteins alpha and betagamma subunits as well as various types of phospholipase C (PLC) in the signaling pathways elicited by basic secretagogues remain unknown. We show that a specific Ab produced against the C-terminus of Galpha(i3) and an anti-recombinant Galpha(i2) Ab inhibited, with additive effects, both exocytosis and arachidonate release from permeabilized rat peritoneal mast cells elicited by the basic secretagogues mastoparan and spermine. A specific Ab directed against Gbetagamma dimers prevented both secretions. Anti-PLCbeta Abs selectively prevented exocytosis. The selective phosphatidylinositol 3-kinase inhibitor LY 294002 prevented arachidonate release without modifying exocytosis. Gbetagamma coimmunoprecipitated with PLCbeta and phosphatidylinositol 3-kinase. The anti-PLCgamma1 and anti-phospholipase A(2) Abs selectively blocked arachidonate release. Protein tyrosine phosphorylation was inhibited by anti-Gbetagamma Abs, LY294002, and anti PLCgamma1 Abs. These data show that the early step of basic secretagogue transduction is common to both signaling pathways, involving betagamma subunits of G(i2) and G(i3) proteins. Activated Gbetagamma interacts, on one hand, with PLCbeta to elicit exocytosis and, on the other hand, with phosphatidylinositol 3-kinase to initiate the sequential activation of PLCgamma1, tyrosine kinases, and phospholipase A(2), leading to arachidonate release.  相似文献   

6.
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   

7.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

8.
Heterotrimeric GTP-binding (G) proteins transduce hormone-induced signals to their effector enzymes, which include several phospholipases. In particular, the G(o)/G(i) and G(q) protein families have been shown to couple signaling to phospholipase A(2) (PLA(2)), phospholipase C, and phospholipase D, while the G(12)/G(13) family has been linked to the activation of small GTPases of the Rho family, and hence, to phospholipase D activation. Here, we demonstrate that in CHO cells, the G(12)/G(13) family is also able to activate cPLA(2)alpha, through the activation of RhoA and, subsequently, ERK1/2. Hormone-induced arachidonic acid release increased as a consequence of Galpha(13) overexpression, and was inhibited through inhibition of Galpha(13) signaling. The Galpha(13)-mediated cPLA(2)alpha activation was inhibited by pharmacological blockade of ERK1/2 with either U0126 or PD98059, and by RhoA inactivation with C3 toxin or a dominant-negative RhoA (N19RhoA), and was stimulated by the serine-threonine phosphatase inhibitor calyculin A. Our data thus identify a pathway of cPLA(2)alpha regulation that is initiated by thrombin and purinergic receptor activation, and that signals through Galpha(13), RhoA and ERK1/2, with the involvement of a calyculin-sensitive phosphatase.  相似文献   

9.
A heterogeneity of CCK2 receptors has been reported which could correspond to different states of coupling to G proteins and/or association with different second messenger systems. To investigate these hypotheses, the wild-type CCK2 receptor and three mutants F347A, D100N and K333M/K334T/R335L, expected to modify the coupling of the G protein with the third intracellular loop of the receptor, were transfected into Cos-7 cells and their binding and signalling properties were evaluated using the natural ligand CCK8. Activation of wild-type as well as F347A, D100N or K333M/K334T/R335L CCK2 receptors by this ligand led to a similar arachidonic acid release which was blocked by pertussis toxin and the phospholipase A2 inhibitor, mepacrine. Nevertheless, in contrast to the wild-type CCK2 receptor, addition of CCK8 to cells transfected with the F347A or K333M/K334T/R335L mutants did not result in the production of inositol phosphates while the maximum increase in this second messenger formation was reduced by 30% with the D100N mutant. Taken together, these results suggest that the CCK2 receptor is coupled to two G proteins and that Phe347 and the cluster of basic residues K333/K334/R335 probably play a key role in Gq protein stimulation leading to inositol phosphate production but not in activation of the G protein coupled to phospholipase A2. These data bring additional support at the molecular level to the existence of different affinity states of CCK2 receptors suggested from the results of binding assays and behavioural studies.  相似文献   

10.
Guanine nucleotide-binding regulatory proteins similar to Gs and Gi may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. In addition, fluoride and nonhydrolyzable GTP analogs activate phospholipases in a manner that can be blocked by GDP beta S. The putative guanine nucleotide-binding regulatory protein that appears to be involved in activation of phospholipase C is sensitive to pertussis toxin in some cells but not in others.  相似文献   

11.
In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers.  相似文献   

12.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

13.
Several neurotransmitters and hormones acting through G protein-coupled receptors elicit a voltage-dependent regulation of CaV2.2 channels, having profound effects on cell function and the organism. It has been hypothesized that protein–protein interactions define specificity in signal transduction. Yet it is unknown how the molecular interactions in an intracellular signaling cascade determine the specificity of the voltage-dependent regulation induced by a specific neurotransmitter. It has been suspected that specific effector regions on the Gβ subunits of the G proteins are responsible for voltage-dependent regulation. The present study examines whether a neurotransmitter’s specificity can be revealed by simple ion-current kinetic analysis likely resulting from interactions between Gβ subunits and the channel-molecule. Noradrenaline is a neurotransmitter that induces voltage-dependent regulation. By using biochemical and patch-clamp methods in rat sympathetic neurons we examined calcium current modulation induced by each of the five Gβ subunits and found that Gβ2 mimics activation kinetic slowing of CaV2.2 channels by noradrenaline. Furthermore, overexpression of the Gβ2 isoform reproduces the effect of noradrenaline in the willing–reluctant model. These results advance our understanding on the mechanisms by which signals conveying from a variety of membrane receptors are able to display precise homeostatic responses.  相似文献   

14.
Human platelets labeled with [3H]arachidonic acid and permeabilized with saponin produced [3H]1,2-diacylglycerol (DG) by phospholipase C and released [3H]arachidonate by phospholipase A2, when activated with thrombin. Thrombin-induced arachidonate liberation was almost completely inhibited with pretreatment of pertussis toxin (10 micrograms/ml), whereas DG formation was decreased by only 20-40% in the toxin-treated platelets. Although guanosine 5'-o-(2-thiodiphosphate) (GDP beta S) suppressed arachidonate release and DG production in a dose-dependent manner, the half maximal inhibition required less than 10 microM for arachidonate release but more than 100 microM for DG production. Moreover, the dose-response effects of NaF on arachidonate release and DG formation were different. These results indicate that arachidonate release and DG formation are differently affected by these agents acting on guanine nucleotide binding proteins (G-proteins), suggesting that the distinct G proteins modulate the activity of phospholipase C and phospholipase A2.  相似文献   

15.
The regulation of prostacyclin (PGI2) synthesis by cultured human umbilical vein endothelium (HUVEC) was investigated. HUVEC monolayer generation of PGI2 was monitored by RIA of 6-keto PGF1 alpha and dose-dependent increases observed with human alpha- and gamma-thrombins, histamine, or arachidonate. Alpha thrombin (10 nM) produced levels of 6-keto PGF1 alpha approximating responses with 1 microM gamma-thrombin, 5 microM arachidonate, or 10 microM histamine. Diisopropyl phosphorofluoridate-inactivated alpha-thrombin did not stimulate PGI2 release, demonstrating that catalytic activity was required for thrombin-stimulated PGI2 release. Sodium fluoride (NaF), at concentrations known to activate guanine nucleotide regulatory proteins (G proteins), directly stimulated HUVEC PGI2 synthesis in a dose-dependent and time-dependent manner (20 mM NaF, 4.4 +/- 0.5-fold increase at 10 min, 11.9 +/- 1.5-fold increase at 30 min). Neither alpha-thrombin nor NaF-stimulated PGI2 release was dependent upon the availability of extracellular Ca++). The hypothesis that G proteins are involved in agonist-stimulated PGI2 synthesis was further supported by studies using digitonin-permeabilized HUVEC monolayers challenged with another G protein activator, guanosine 5'-0-3-thiotrisphosphate (GTP gamma S), which effected significant dose-dependent increases in PGI2 synthesis compared with control levels of 6-keto PGF1 alpha. In contrast, the G-protein inhibitor GDP beta S, (guanosine 5'-0-2-thiodiphosphate), attenuated alpha-thrombin-mediated prostaglandin generation. Treatment of HUVEC monolayers with pertussis toxin (1 microgram/ml) did not inhibit the PGI2 synthesis stimulated by either alpha-thrombin, NaF, or histamine but catalyzed the ADP ribosylation of a 40 kDa membrane protein which cross-reacted with antisera against a synthetic peptide corresponding to an amino acid sequence common to the alpha-subunit of other G-proteins. Preincubation of HUVEC microsomal membranes with alpha-thrombin diminished pertussis toxin-catalyzed ADP ribosylation in a time-dependent manner. These data suggest that thrombin stimulation of PGI2 synthesis by HUVEC monolayers requires the catalytically functional enzyme and further suggests that the thrombin-occupied receptor is coupled to phospholipase activities by a pertussis toxin-insensitive guanine nucleotide regulatory protein in human endothelial cell membranes.  相似文献   

16.
The final common pathway of hypothalamo-hypophyseal regulation is composed of neurosecretory neurons elaborating over 20 different neurotransmitters or neuropeptides. Cell bodies of these neurons are located in four major hypothalamic structures (supraoptic and paraventricular nuclei, the preoptic hypothalamic area, and the arcuate-ventromedial region). Their axons build up the tuberoinfundibular bundle, which innervates the median eminence and the posterior pituitary. In those structures, neurosecretory nerve terminals release their secretion product into a microcirculation across neurovascular junctions. Each of the five adenohypophyseal cell types, as well as secretory cells of the intermediate lobe, express specific receptors for several neurotransmitters, many of which are colocalised in the same neuron. In addition, most pituitary neuropeptide receptors are located on more than one cell type. Consequently, pituitary secretion is controlled by multiple neural signals.

Integration of these signals by the cell is achieved by reciprocal interactions between receptor coupling mechanisms. Those involve protein complexes which activate or inhibit adenylate cyclase, as well as mediation by phospholipases. Depending upon its particular mode of coupling, each transmitter-receptor complex can determine activation of phospholipase A or C, phosphoinositide-induced opening of Ca2+ channels, or formation of arachidonic acid, a precursor of prostaglandins and leukotrienes. The present chapter reviews the cellular distribution and the coupling pathways of major neural signals driving pituitary functions, and discusses the functional consequences of reciprocal interactions between adenylate cyclase and phospholipase modulation.  相似文献   


17.
High efficiency transient transfection of Cos-7 cells was previously used to establish the functional coupling between G alpha q/G alpha 11 and phospholipase C beta 1 (Wu, D., Lee, C-H., Rhee, S. G., and Simon, M. I. (1992) J. Biol. Chem. 267, 1811-1817). Here the same system was used to study the functional coupling between other guanine nucleotide-binding regulatory protein (G-protein) alpha subunits and phospholipases and to study which G alpha subunits mediate the activation of phospholipase C by the alpha 1-adrenergic receptor subtypes, alpha 1 A, alpha 1 B, and alpha 1 C. We found that G alpha 14 and G alpha 16 behaved like G alpha 11 or G alpha q, i.e. they could activate endogenous phospholipases in Cos-7 cells in the presence of AIFn. The synergistic increase in inositol phosphate release in Cos-7 cells after they were cotransfected with cDNAs encoding G alpha subunits and phospholipase C beta 1 indicates that both G alpha 16 and G alpha 14 can activate phospholipase C beta 1. The activation of phospholipase C beta 1 was restricted to members of the Gq subfamily of alpha subunits. They activated phospholipase C beta 1 but not phospholipase C gamma 1, gamma 2, or phospholipase C delta 3. The cotransfection of Cos-7 cells with cDNAs encoding three different alpha 1-adrenergic receptors and G alpha q or G alpha 11 leads to an increase in norepinephrine-dependent inositol phosphate release. This indicates that G alpha q or G alpha 11 can mediate the activation of phospholipase C by all three subtypes of alpha 1-adrenergic receptors. With the same assay system, G alpha 16 and G alpha 14 appear to be differentially involved in the activation of phospholipase C by the alpha 1-adrenergic receptors. The alpha 1 B subtype receptor gave a ligand-mediated synergistic response in the cells cotransfected with either G alpha 14 or G alpha 16. However, the alpha 1 C receptor responded in cells cotransfected with G alpha 14 but not G alpha 16, and the alpha 1 A receptor showed little synergistic response in cells transfected with either G alpha 14 or G alpha 16. The ability of the alpha 1 A and alpha 1 C receptors to activate phospholipase C through G alpha q and G alpha 11 was also demonstrated in a cell-free system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Light stimulates phospholipase A2 activity in rod outer segments (ROS) of bovine retina as measured by the liberation of arachidonate from phosphatidylcholine, in in vitro assays of dark-adapted ROS. A role for GTP-binding proteins (G or N proteins) in the light activation of phospholipase A2 is suggested by the capacity for guanosine 5'-O-(thiotriphosphate) (GTP gamma S) to activate phospholipase A2 in dark-adapted ROS. In contrast, addition of GTP gamma S coincident with light exposure inhibited the light activation of phospholipase A2, suggesting that phospholipase A2 activity in the ROS is under dual regulation by G proteins. Transducin, the major G protein of the ROS, mediates the activation of cGMP phosphodiesterase by light and is a substrate for both cholera and pertussis toxin. Treatment of dark-adapted ROS with either toxin inhibits both basal and light-activated phospholipase A2, mimicking the action of the toxins on the light-induced cGMP phosphodiesterase activity of ROS. There is a loss of light-sensitive phospholipase A2 activity coincident with extraction of transducin from ROS membranes. In addition, the light-sensitive phospholipase A2 activity can be partially restored by the addition of purified transducin to the extracted ROS membranes. Light activation of phospholipase A2 in ROS membranes thus occurs by a transducin-dependent mechanism.  相似文献   

19.
The mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK) and p38, can both contribute to the activation of cytosolic phospholipase A2 (cPLA2). We have investigated the hypothesis that ERK and p38 together or independent of one another play roles in the regulation of cPLA2 in macrophages responding to the oral bacterium Prevotella intermedia or zymosan. Stimulation with bacteria or zymosan beads caused arachidonate release and enhanced in vitro cPLA2 activity of cell lysate by 1.5- and 1.7-fold, respectively, as well as activation of ERK and p38. The specific inhibitor of MAP kinase kinase, PD 98059, and the inhibitor of p38, SB 203580, both partially inhibited cPLA2 activation and arachidonate release induced by bacteria and zymosan. Together, the two inhibitors had additive effects and completely blocked cPLA2 activation and arachidonate release. The present results demonstrate that ERK and p38 both have important roles in the regulation of cPLA2 and together account for its activation in P. intermedia and zymosan-stimulated mouse macrophages.  相似文献   

20.
Gastric epithelial cells liberate prostaglandin E(2) in response to cytokines as part of the process of healing of gastric lesions. Treatment of the rat gastric epithelial cell line RGM1 with transforming growth factor-alpha and interleukin-1beta leads to synergistic release of arachidonate and production of prostaglandin E(2). Results with highly specific and potent phospholipase A(2) inhibitors and with small interfering RNA show that cytosolic phospholipase A(2)-alpha and group IIA secreted phospholipase A(2) contribute to arachidonate release from cytokine-stimulated RGM1 cells. In the late phase of arachidonate release, group IIA secreted phospholipase A(2) is induced (detected at the mRNA and protein levels), and the action of cytosolic phospholipase A(2)-alpha is required for this induction. Results with RGM1 cells and group IIA secreted phospholipase A(2)-transfected HEK293 cells show that the group IIA phospholipase acts prior to externalization from the cells. RGM1 cells also express group XIIA secreted phospholipase A(2), but this enzyme is not regulated by cytokines nor does it contribute to arachidonate release. The other eight secreted phospholipases A(2) were not detected in RGM1 cells at the mRNA level. These results clearly show that cytosolic and group IIA secreted phospholipases A(2) work together to liberate arachidonate from RGM1 cell phospholipids in response to cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号