首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Arezi  B W Kirk  W C Copeland  R D Kuchta 《Biochemistry》1999,38(39):12899-12907
Regulation of the p49-p58 primase complex during primer synthesis and the interaction of the primase subunits with DNA were examined. After primase synthesizes a primer that DNA polymerase alpha (pol alpha) can readily elongate, further primase activity is negatively regulated. This occurs within both the context of the four-subunit pol alpha-primase complex and in the p49-p58 primase complex, indicating that the newly generated primer-template species need not interact with pol alpha to regulate further primase activity. Photo-cross-linking of single-stranded DNA-primase complexes revealed that whereas the isolated p49 and p58 subunits both reacted with DNA upon photolysis, only the p58 subunit reacted with the DNA when photolysis was performed using the p49-p58 primase complex. After primer synthesis by the complex, p58 was again the only subunit that reacted with the DNA. These results suggest a model for regulation of primer synthesis in which the newly synthesized primer-template species binds to p58 and regulates further primer synthesis. Additionally, the ability of p58 to interact with primer-template species suggests that p58 mediates the transfer of primers from the primase active site to pol alpha.  相似文献   

2.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

3.
Models of DNA replication in yeast and Xenopus suggest that Mcm10p is required to generate the pre-initiation complex as well as progression of the replication fork during the elongation of DNA chains. In this report, we show that the Schizosaccharomyces pombe Mcm10p/Cdc23p binds to the S. pombe DNA polymerase (pol) alpha-primase complex in vitro by interacting specifically with the catalytic p180 subunit and stimulates DNA synthesis catalyzed by the pol alpha-primase complex with various primed DNA templates. We investigated the mechanism by which Mcm10p activates the polymerase activity of the pol alpha-primase complex by generating truncated derivatives of the full-length 593-amino acid Mcm10p. Their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA and to pol alpha were compared. Concomitant with increased deletion of the N-terminal region (from amino acids 95 to 415), Mcm10p derivatives lost their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA. Truncated derivatives of Mcm10p containing amino acids 1-416 retained the pol alpha binding activity, whereas the C terminus, amino acids 496-593, did not. These results demonstrate that both the single-stranded DNA binding and the pol alpha binding properties of Mcm10p play important roles in the activation. In accord with these findings, Mcm10p facilitated the binding of pol alpha-primase complex to primed DNA and formed a stable complex with pol alpha-primase on primed templates. A mutant that failed to activate or bind to DNA and pol alpha, was not observed in this complex. We suggest that the interaction of Mcm10p with the pol alpha-primase complex, its binding to single-stranded DNA, and its activation of the polymerase complex together contribute to its role in the elongation phase of DNA replication.  相似文献   

4.
Dissociation and reconstitution of a DNA polymerase alpha-primase complex   总被引:3,自引:0,他引:3  
The conditions for dissociation of the DNA polymerase alpha-primase complex (DNA polymerase alpha 1) have been examined. It was revealed that 50% ethylene glycol effectively dissociated the complex. The dissociated DNA polymerase and primase were purified to eliminate cross-contaminating activities by column chromatography using buffers containing 50% ethylene glycol. The sedimentation coefficients of the purified DNA polymerase and primase were 7.1S and 5.7S, respectively. These two enzymes were mixed in the presence of 20% ethylene glycol and the mixture was sedimented through a glycerol gradient containing no ethylene glycol. The DNA polymerase and primase activities co-sedimented at 9.1S which corresponds to the S value of intact alpha 1, indicating the reconstitution of the DNA polymerase alpha-primase complex.  相似文献   

5.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

7.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

8.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

9.
The human DNA polymerase alpha catalytic polypeptide has been functionally overexpressed by a recombinant baculovirus in insect cells at greater than 1000-fold higher levels than that found in cultured normal human cells. The recombinant polymerase alpha protein is translated from its natural translation start codon under the control of the baculovirus polyhedron promoter producing a protein of 180 kDa, identical in size to that isolated from cultured human cells. This recombinant polymerase alpha is phosphorylated and reactive to a panel of monoclonal antibodies directed against the native polymerase alpha-primase complex and to polyclonal antisera against N- and C-terminal peptides of the polymerase alpha catalytic polypeptide. The recombinant enzyme was immunopurified from insect cells as a single polypeptide. The single subunit recombinant polymerase alpha has no detectable 3'-5' exonuclease activity. The Km for primer-template and dNTP, reactivity to inhibitors, N2-(p-n-butylphenyl)-dGTP (BuPdGTP) and aphidicolin, thermosensitivity, and DNA synthetic processivity and fidelity of the recombinant polymerase alpha are identical to that observed with the four-subunit polymerase alpha-primase complex immunopurified from cultured human cells. These results strongly suggest that the presence of the other subunits, (the p70 and the two primase subunits, p48 and p58), does not influence kinetic parameters of polymerase alpha catalysis, sensitivity to inhibitors, or DNA synthetic fidelity and processivity.  相似文献   

10.
L K Zerbe  M F Goodman  E Efrati  R D Kuchta 《Biochemistry》1999,38(39):12908-12914
The effects of abasic lesions on both primase activity and DNA polymerase alpha- (pol alpha) catalyzed elongation of primase-synthesized primers were examined. Abasic lesions were strong chain terminators during primer synthesis by primase. However, extension of primase-synthesized primers by pol alpha resulted in 60-93% bypass of abasic lesions. Sequencing of bypass products generated during this primase-coupled pol alpha activity showed that dAMP was preferentially incorporated opposite the abasic lesion, indicating that pol alpha was responsible for bypass. In contrast, previous analyses of pol alpha-catalyzed elongation of exogenously supplied DNA primer-templates showed that abasic lesions strongly terminated DNA synthesis. Thus, elongation of primase-synthesized primers by pol alpha-primase is fundamentally different than elongation of exogenously added primer-templates with respect to interaction with abasic lesions. Furthermore, this high level of abasic lesion bypass during primase-coupled pol alpha activity provides an additional mechanism for how translesional synthesis may occur in vivo, an event hypothesized to be mutagenic.  相似文献   

11.
T F Ho  J S Gupta  E A Faust 《Biochemistry》1989,28(11):4622-4628
Two species of DNA polymerase alpha free of primase activity were identified in extracts of Ehrlich mouse cells that had been infected with minute virus of mice. Primase-free forms of DNA polymerase alpha eluted with 150 and 180 mM NaCl during ion-exchange chromatography on DEAE-cellulose columns, exhibited sedimentation coefficients of 11 S and 8.2 S, respectively, and were inhibited by aphidicolin, N2-(p-n-butylphenyl)-9-(2-deoxy-beta-D-ribofuranosyl)guanine 5'-triphosphate, and 2-(p-n-butylanilino)-9-(2-deoxy-beta-D-ribofuranosyl)adenine 5'-triphosphate. The ratio of primase-free DNA polymerase alpha to the DNA polymerase alpha-primase complex increased from 1.5 to greater than 100 during the course of infection, and free primase was produced during the MVM replicative cycle.  相似文献   

12.
The influence of DNA polymerase (pol) alpha and DNA primase on SV40 DNA replication was examined in both the monopolymerase and dipolymerase systems. The synthesis of oligoribonucleotides in the monopolymerase and dipolymerase systems, followed by pulse labeling with deoxynucleoside triphosphates, yielded short Okazaki fragments approximately 35 nucleotides in length that were chased into full-length Okazaki fragments with time. In the presence of activator 1 and proliferating cell nuclear antigen (PCNA), but no pol delta, these short fragments hardly increased in size with time. DNA fragments of similar size (approximately 35 nucleotides) were previously observed in SV40 replication reactions carried out with crude extracts of HeLa cells in the presence of antibodies directed against PCNA (Bullock, P. A., Seo, Y.S., and Hurwitz, J. (1991) Mol. Cell. Biol. 11, 2350-2361). Thus, the pol alpha-primase complex appears to act processively for only a short distance. At high levels of pol alpha and primase, both short and long DNA products were formed in both systems. In the presence of limiting amounts of pol alpha and excess primase, the monopolymerase system inefficiently yielded longer length Okazaki fragments than those formed with excess pol alpha and primase, whereas the dipolymerase system yielded both short and long DNA fragments. In the presence of limiting amounts of primase and excess pol alpha, long products were formed in both systems, and virtually no short products accumulated. Thus, the ratio between the polymerase and primer ends available controls the size of the nascent product DNA strands. We examined whether PCNA, the T4 phage-encoded gene product 45 (T4 gp45), and the Escherichia coli beta subunit of DNA polymerase III (dnaN gene product) supported SV40 DNA replication and the elongation of single-stranded DNA-binding protein-coated singly primed DNA in reactions catalyzed by pol delta, T4 DNA pol, and E. coli DNA pol III*, respectively. In the presence of T4 gp44/62 and T4 gp32 (but not human single-stranded DNA-binding protein isolated from HeLa cells), T4 DNA pol was weakly activated by PCNA and the beta subunit in lieu of T4 gp45 in the elongation of singly primed phi X174 DNA. However, the other systems were specific for their analogous auxiliary factors. This specificity indicates the importance of protein-protein interactions.  相似文献   

13.
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro.  相似文献   

14.
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication.  相似文献   

15.
Two hybrid cell lines (DM88-5E12 and DM88-4C9) secreting monoclonal antibodies against DNA polymerase alpha-primase complex from Drosophila melanogaster Kc cells were established by immunizing mice with the complex partially purified by a conventional method. The IgG subclasses of both antibodies were IgG1. Both antibodies immunoprecipitated the DNA polymerase alpha-primase complex from D. melanogaster Kc cells. The DNA-polymerizing activity was neutralized by 4C9 antibody, but not by 5E12 antibody. The DNA priming activity was not neutralized by either antibody. These antibodies did not cross-react to HeLa DNA polymerase alpha-primase complex. A rapid, two-step purification of DNA polymerase alpha-primase complex from D. melanogaster Kc cell was carried out by 5E12 antibody column chromatography followed by single-stranded DNA cellulose column chromatography. The immunoaffinity-purified enzyme had both DNA-polymerizing and DNA-priming activities with the specific activities of 50,000 and 2,000 units/mg, respectively. The effects of aphidicolin, NEM, ddTTP, BuPdGTP, and DMSO on the enzyme activity showed that the purified enzyme was DNA polymerase alpha, but not DNA polymerase beta, gamma, or delta. The purified enzyme consisted of polypeptides with apparent molecular weights of 180 (and 145, 140, 130 kDa), 72, 63, 51, and 49 kDa. The 5E12 antibody was shown to bind to all the high-molecular-weight polypeptides, 180, 145, 140, and 130 kDa, by immuno-Western blotting analysis.  相似文献   

16.
We characterized the primase complex of the hyperthermophilic archaeon, Pyrococcus furiosus. The two proteins, Pfup41 and Pfup46, have similar sequences to the p48 and p58 subunits, respectively, of the eukaryotic DNA polymerase alpha-primase complex. Unlike previously reported primases, the Pfup41 preferentially utilizes deoxyribonucleotides for its de novo synthesis, and moreover, it synthesizes up to several kilobases in length in a template-dependent manner (Bocquier, A., Liu, L., Cann, I., Komori, K., Kohda, D., and Ishino, Y. (2001) Curr. Biol. 11, 452-456). The p41-p46 complex showed higher DNA binding activity than the catalytic p41 subunit alone. In addition, the amount of DNA synthesized by the p41-p46 complex was much more abundant and shorter in length than that by Pfup41 alone. The activity for RNA primer synthesis, which was not detected with Pfup41, was observed from the reaction using the p41-p46 complex in vitro. The in vitro replication of M13 single-stranded DNA by the P. furiosus proteins was stimulated by ATP. Observation of the labeled primers by using [gamma-(32)P]ATP in the substrates suggests ATP as the preferable initiating nucleotide for the p41-p46 complex. These results show that the primer synthesis activity of Pfup41 is regulated by Pfup46, and the p41-p46 complex may function as the primase in the DNA replication machinery of P. furiosus, in a similar fashion to the eukaryotic polymerase alpha-primase complex.  相似文献   

17.
DNA ligase I is thought to be essential for DNA replication, repair and recombination, at least in the mitotic cell cycle, but whether this is also the case during the meiotic cell cycle is still obscure. To investigate the role of DNA ligase I during the meiotic cell cycle, we cloned the Coprinus cinereus DNA ligase I cDNA (CcLIG1). Northern blotting analysis indicated that CcLIG1 is expressed not only in the premeiotic S-phase but also during the meiotic cell cycle itself. Especially, intense signals were observed in the leptotene and zygotene stages. Western blotting analysis indicated that CcLIG1 is expressed through the meiotic cell cycle and immunofluorescence also showed CcLIG1 protein staining in meiotic cells. Interestingly, the patterns was similar to that for the C. cinereus proliferating cell nuclear antigen gene (CcPCNA) and immunoprecipitation analysis suggested that CcPCNA binds to CcLIG1 in crude extracts of meiotic prophase I tissues. Based on these observations, relationships and roles during the meiotic cell cycle are discussed.  相似文献   

18.
The influence of poly(ADP-ribose) polymerase (PARP) on the replication of DNA containing the SV40 origin of replication has been examined. Extensive replication of SV40 DNA can be carried out in the presence of T antigen, topoisomerase I, the multimeric human single strand DNA-binding protein (HSSB), and DNA polymerase alpha-DNA primase (pol alpha-primase) complex (the monopolymerase system). In the monopolymerase system, both small products (Okazaki fragments), arising from lagging strand synthesis, and long products, arising from leading strand synthesis, are formed. The synthesis of long products requires the presence of relatively high levels of pol alpha-primase complex. In the presence of PARP, the synthesis of long products was blocked and only small Okazaki fragments accumulated, arising from the replication of the lagging strand template. The inhibition of leading strand synthesis by PARP can be effectively reversed by supplementing the monopolymerase system with the multimeric activator 1 protein (A1), the proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta (the dipolymerase system). The inhibition of leading strand synthesis in the monopolymerase system was caused by the binding of PARP to the ends of DNA chains, which blocked their further extension by pol alpha. The selective accumulation of Okazaki fragments was shown to be due to the coupled synthesis of primers by DNA primase and their immediate extension by pol alpha complexed to primase. PARP had little effect on this coupled reaction, but did inhibit the subsequent elongation of products, presumably after pol alpha dissociated from the 3'-end of the DNA fragments. PARP inhibited several other enzymatic reactions which required free ends of DNA chains. PARP inhibited exonuclease III, DNA ligase, the 5' to 3' exonuclease, and the elongation of primed DNA templates by pol alpha. In contrast, PARP only partly competed with the elongation of primed DNA templates by the pol delta elongation system which required SSB, A1, and PCNA. These results suggest that the binding of PARP at the ends of nascent DNA chains can be displaced by the binding of A1 and PCNA to primer ends. HSSB can be poly(ADP-ribosylated) in vivo as well as in vitro. However, the selective effect of PARP in blocking leading strand synthesis in the monopolymerase system was shown to depend primarily on its DNA binding property rather than on its ability to synthesize poly(ADP-ribose).  相似文献   

19.
The majority of the DNA polymerase alpha activity in HeLa cells has been isolated and purified as a multiprotein Mr 640,000 form. The multiprotein form of DNA polymerase alpha corresponds to DNA polymerase alpha 2 that was previously reported by us (Lamothe, P., Baril, B., Chi, A., Lee, L., and Baril, E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4723-4727). The highly purified DNA polymerase alpha 2 has in addition to DNA polymerase alpha-associated DNase, primase, and diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A)binding activities and accessory primer recognition proteins C1 and C2. The DNA polymerase alpha and associated activities increase coordinately during the G1/S-phase transition of the cell cycle. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the electrophoretically homogeneous DNA polymerase alpha shows that it is composed of at least eight polypeptides in the molecular weight range of 180,000-15,000. Hydrophobic chromatography on butyl-agarose resolves the DNase and Ap4A-binding protein from a complex of DNA polymerase alpha, primase, and the primer recognition proteins C1 and C2. Hydrophobic chromatography of the latter complex on phenyl-Sepharose resolves the C1 protein from a DNA polymerase alpha-C2 protein-primase complex. Phosphocellulose chromatography of the DNA polymerase-primase-C2 protein complex resolves the C2 protein from a complex of DNA polymerase alpha-primase.  相似文献   

20.
In the basidiomycete Coprinus cinereus (C. cinereus), which shows a highly synchronous meiotic cell cycle, the meiotic prophase I cells demonstrate flap endonuclease-1 activity. To investigate its role during meiosis, we isolated a C. cinereus cDNA homolog of flap endonuclease-1 (CcFEN-1), 1377bp in length with the open reading frame (ORF) encoding a predicted molecular mass of 51 kDa. At amino-acid residues Glu276-Pro345, a specific inserted sequence composed of 70 amino acids rich in polar forms was found to exist, without sequence identity to other eukaryotic FEN-1 or the polar amino acid rich sequences found in C. cinereus PCNA and C. cinereus DNA ligase IV, although the lengths and percentages of polar amino acids were similar. Northern hybridization analysis indicated CcFEN-1 to be expressed not only in the pre-meiotic S phase but also in meiotic prophase I. The roles of CcFEN-1 during meiosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号