首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dry weight content of root samples from perennial ryegrass and white clover decreased significantly over a week’s storage in 70% ethanol, but did not change further with longer storage times. Ryegrass roots lost on average 22.4% of the original dry weight, and clover roots lost 29.2%. Storage of roots in ethanol prior to image analysis of root traits could introduce significant error in the calculation of parameters involving root dry weight. Determination of root fresh weights, and dry weight for a subsample prior to preservation would allow calculation of a correction factor for dry weights obtained from preserved samples.  相似文献   

2.
M. Amato  A. Pardo 《Plant and Soil》1994,161(2):299-303
Data are presented on the differences in root length density (RLD), dry matter (DM), and root diameter values determined on wheat and faba bean using sieves of different mesh size to separate roots from soil during sample preparation. Screens with 0.2, 1, and 2 mm (0.04, 1, and 4 mm2) aperture were used. Roots collected on the 2-mm sieve represented on average 55% of the weight and only 10% of the total length collected using a 0.2-mm sieve. With a 1-mm sieve 75% of weight was retained, but only 34% of the length. In the 0–20 cm soil layer average RLD and DM values ranged between 1.3 and 2.5 cm cm-3 and 215 and 136 g m-2 for faba bean and wheat respectively with 2 mm screens and 14.6 and 18.1 cm cm-3 and 313 and 202 g m-2 with 0.2 mm sieves. RLD was more affected than weight since losses from coarse screens were largely due to fine root fractions, although the 1-and 2-mm screens retained a small amount of fine roots that were long or attached to main structures. Variability was higher for measurements on coarser screens. The use of screens much coarser than the diameter of fine roots is not recommended for the study of surface-related phenomena in which root length quantification is necessary, while it may be acceptable for gross comparisons of root weight and spatial extent.  相似文献   

3.
A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes.Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased.The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns.At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties.The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.  相似文献   

4.
Photosynthesis, respiration and growth of two cultivars of carrotwith contrasting ratios of shoot: storage root weight at maturity,were compared during initiation of the storage root at 20 °C.Partition of assimilate between shoot, roots and respirationshowed no varietal differences but distribution between storageand fibrous roots was different from the time that the storageroot could be morphologically identified. For both cultivarsover the period investigated, approximately 64% of net photosynthesiswas partitioned to the shoot with 5% lost as respiration duringthe dark and 59% used in growth. Of that exported to the rootsystem (36%), 19% (of net photosynthesis) was used in growthand 17% was lost in respiration. In the cultivar with greatershoot: storage root ratio at maturity, 4.6% was allocated tothe storage root in contrast to 7.5% in the cultivar with alesser shoot: storage ratio at maturity. It is concluded thatgreater dry matter accumulation in the storage root of the lattercultivar does not result from transient differences in respiratoryloss and is not evident in shoot to total root dry matter distributionover this period. Daucus carota L, carrot, assimilate partition, shoot, storage root, shoot: root ratio  相似文献   

5.
The effect of low root temperature on the growth and K requirements of young tomato (Lycopersicon esculentum Mill. cv Sonatine) plants was investigated. When K was supplied in solution at high concentration (5 mM), lowering the temperature of the root system from 25° to 15°C reduced the relative growth rate so that after ten days plant dry weight was 60% and leaf area 44% of that of controls maintained at 25°C. Shoot: root dry weight ratio was initially increased by cooling, but declined to 84% of controls after ten days. In spite of these changes in shoot: root ratio the concentration of K in whole plants, expressed on the basis of tissue water, was stable throughout the experiment and was significantly higher than that of controls. Further, the critical concentration of K for shoots (the concentration in the shoot associated with 90% maximum growth) was also increased at root temperatures of 15° and 30°C compared with 24°C. It is suggested that the higher concentration of K at low root temperature may reflect a real increase in requirement for the element at the physiological level. Preliminary measurements of the solute potential demonstrated a less osmotically active sap in leaves of root-cooled plants, thus there may be a greater reliance on K as an osmoticum in these individuals. When supplies of K limited growth, root-cooling had no effect on any of the parameters determining the efficiency of its use; the minimum concentration to which roots could deplete the solution of K was identical for cooled and control plants and at the same stage of visible deficiency there was no significant difference in the efficiency ratio (mg DW, mg-1 K) or utilization efficiency (mg DW mM -1 K), in spite of large differences in the partitioning of dry matter.  相似文献   

6.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

7.
Lõhmus  Krista  Ivask  Mari 《Plant and Soil》1995,168(1):89-94
Long-term decomposition and nitrogen dynamics of Norway spruce finest (<1 mm in diameter) and fine (<2 mm in diameter) roots were estimated using the root litter-bag techniques. The seasonal decomposition of the finest roots was investigated in a 40-year-old high site quality stand grown on brown lessive soil at different depths as part of productivity studies. The fine root decomposition studies were conducted on 8 permanent plots in the Estonia with the aim to describe the site variation. The initial material was collected from one of stands (high quality site) and incubated at the depth of 10 cm in 1989 (at one site 1990). The bags were collected once or twice a year except for one site, where the seasonal dynamics was investigated. In all initial and decomposing root samples oven-dry weight, ash and energy content and nitrogen concentration was determined. After five years the finest roots had lost 40% of their initial dry weight, half of it during the first year. The initial concentration of nitrogen was 1.29%, the mean concentrations varied during the incubation from 1.47 to 1.78%. After the first year fine roots had lost 21.0 to 32.7% of their initial dry weight, after two years the weight loss was 22.5 to 43.2%. The initial N concentration in fine roots was 0.73% and in the first years it varied from 0.97 to 1.40% at different sites.  相似文献   

8.
Five genotypes of swede (Brassica napus var. napobrassica), two genotypes of kale (B. oleracea var. acephala), and two genotypes of rape (B. napus var. napus) were each inoculated at the 8–10 true leaf stage with five cabbage root fly (Delia radicum) eggs. The percentage pupation after larval feeding on individual plant genotypes ranged from 45 to 78%, and the mean pupal weight from 6.5 to 13.0 mg. After 5 weeks, larval feeding damage had reduced root weight by up to 47%, compared with uninoculated plants. The dry matter content of undamaged roots was higher in the kales and rapes than in the swedes. Whilst the dry matter content of the rapes and swedes were not changed by D. radicum damage, that of the kales was elevated. The ethanol-soluble sugar content of the root was reduced in all cases by D. radicum larval damage. However, the effect of D. radicum damage on the concentrations of individual sugars (glucose, fructose and sucrose) was crop- and genotype-dependent. In the roots of kales and rapes, the glucose and fructose concentrations were either very low or unaffected by D. radicum damage, whilst both glucose and fructose were generally reduced in swede roots by D. radicum damage. The root sucrose concentration was either reduced or not significantly affected by D. radicum damage in all of the crop types tested. The percentage pupation and the mean pupal weight of D. radicum were inversely correlated to root freeze-dried matter content. D. radicum pupal weight was positively correlated with root fructose, glucose and ethanol-soluble sugar contents.  相似文献   

9.
In 1967 and 1968 plots of sugar beet in two identically grown crops were shaded for successive four week periods starting on 13 June, 18 July and 22 August, and the growth of the plants compared with that on unshaded plots. At the beginning of each period in 1967 some shaded and unshaded plants received additional nitrogen, and in 1968 plants continuously shaded from June to September were compared with unshaded plants irrigated to equalize their water losses with those of the shaded plants. The weather in 1967 was sunny and dry and that in 1968 dull and wet, but the yields of dry matter, and particularly of sugar, of the unshaded crop in the 2 years were similar because, although net assimilation rate (E) was greater in 1967 than 1968, mean leaf area index (L) in 1968 was almost double that in the 1967 crop. Shading decreased the incoming radiation by 56%; it decreased E proportionally in 1967, increasing L slightly, but it decreased both E (by 44%) and L in 1968. The weights of dry matter and sugar in the roots of the shaded crop were consistently smaller at the end of shading and at final harvest in October in both years, and their weights, but not those of the tops or the whole plant, at final harvest over all shading treatments in both years were proportional to the amount of radiation received by the crop between June and September. Although shading greatly decreased the supply of photosynthate to the roots, it did not change the sugar content percentage of dry matter, except in the early stages of growth when the sugar content was rapidly increasing. Sugar content percentage of fresh weight of the roots was consistently decreased by shading, wholly because water content was increased relative to dry matter. Therefore the sugar yield of shaded plants was less because the dry weights of the roots were less, not because the partition of photosynthate between sugar storage and root growth changed. There appears to be a mechanism within the root operating over a wide range of photosynthate supply that maintains a nearly constant proportion of sucrose to non-sugar, contrary to the hypothesis that sugar stored in the roots is photosynthate in excess of what can be used in growth of the plant. However, in the extreme condition of continuous shading which drastically decreased the dry weights of all parts of the plant, sugar percentage of dry matter in the roots was decreased, but only from 80 to 70%. In 1967 extra nitrogen applied at the start of shading increased L and the dry weight of the tops in all periods, but had no effect on the dry weight of roots. Because 1968 was a wet year the irrigation treatment had no effect on E or L except for a slight increase in L during the first period; it had no effect on plant dry weight. Both irrigation and additional nitrogen decreased the sugar content percentage of fresh weight of the roots only by altering their water content; sugar percentage of dry matter was unaffected. None of these changes persisted until the final harvest in October.  相似文献   

10.
Pronk  A.A.  De Willigen  P.  Heuvelink  E.  Challa  H. 《Plant and Soil》2002,243(2):161-171
Aboveground dry mass, total root dry mass and root length density of the fine roots of Thuja occidentalis `Brabant' were determined under non- and drip-irrigated field conditions. Two-dimensional diffusion parameters for dynamic root growth were estimated based on dry mass production of the fine roots and the concept of the convective-diffusion model of cylindrical root growth and proliferation. Drip irrigation increased above-ground dry mass and the shoot:root ratio compared with no irrigation. Dry mass of the coarse roots increased as well due to drip irrigation. No effect on total or fine root dry mass was found. Drip irrigation increased root length densities in the top 0.1 m but not significantly. However, drip irrigation decreased root proliferation in depth by 27%, whereas proliferation in the horizontal direction was not altered. Measured root length densities were overestimated by 6–21% by the model (0.68 < R 2 < 0.92).  相似文献   

11.
A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture.  相似文献   

12.
Two experiments were carried out to study physiological effects of vesicular-arbuseular mycorrhizal infection on Plantago major L., ssp. pleiosperma (Pilger). In the first experiment, infection by the Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe increased growth, shoot to root ratio, P concentrations in both shoot and roots and total uptake of P per plant. The percentages of dry matter in both shoot and roots were lower in mycorrhizal plants.
In the second experiment different P treatments were applied to both mycorrhizal and non-mycorrhizal P. major plants to separate any effects of mycorrhizal infection from increased uptake of P. In addition to the effects found in the first experiment, mycorrhizal, P, and mycorrhizal x P interaction effects were found on root respiration rate and the concentration of soluble sugars in the roots. No clear effects on total dry weight, N and starch concentrations in shoot and roots and sugar concentraion in the shoot were found. Irrespective of the mycorrhizal treatment, increased P concentration in the shoot correlated with an increased shoot to root ratio and root respiration rate, and a decreased percentage dry matter and sugar concentration in the roots. However, the root respiration rate and the P concentration in the roots of mycorrhizal plants were enhanced more than expected from the increased P concentrations in the shoots of these plants.  相似文献   

13.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

14.
Analysis of the effects of soil management practices on crop production requires knowledge of these effects on plant roots. Much time is required to wash plant roots from soil and separate the living plant roots from organic debris and previous years’ roots. We developed a root washer that can accommodate relatively large soil samples for washing. The root washer has a rotary design and will accommodate up to 24 samples (100 mm diam. by 240 mm long) at one time. We used a flat-bed scanner to digitize an image of the roots from each sample and used a grid system with commercially-available image analysis software to analyze each sample for root surface area. Sensitivity analysis and subsequent comparisons of ‘dirty’ samples containing the roots and all the organic debris contained in the sample and ‘clean’ samples where the organic debris was manually removed from each sample showed that up to 15% of the projected image could be coveredwith debris without affecting accuracy and precision of root surface area measurements. Samples containing a large amount of debris may need to be partitioned into more than one scanning tray to allow accurate measurements of the root surface area. Sample processing time was reduced from 20 h, when hand separation of roots from debris was used, to about 0.5 h, when analyzing the image from an uncleaned sample. The method minimizes the need for preprocessing steps such as dying the roots to get better image contrast for image analysis. Some information, such as root length, root diameter classes and root weights, is not obtained when using this technique. Root length measurements, if needed, could be made by hand on the digital images. Root weight measurement would require sample cleaning and the advantage of less processing time per sample with this method would be lost. The significance of the tradeoff between information not obtained using this technique and the ability to process a greater number of samples with the time and personnel resources available must be determined by the individual researcher and research objectives.  相似文献   

15.
不同分类系统下油松幼苗根系特征的差异与联系   总被引:3,自引:0,他引:3       下载免费PDF全文
植物根序和径级不仅反映细根的形态结构, 而且能反映根系的一些生理特征, 如细根寿命和周转等。该文以二年生油松(Pinus tabulaeformis)幼苗根系为研究对象, 系统比较了根序分类方法和径级分类方法在描述根系特征上的优缺点, 探索了两者之间的内在联系。结果表明: 二年生油松幼苗最多可包括6级根序, 直径的变化范围为0.169-3.877 mm。按根序划分, I-VI级根序的总根长和总根表面积主要集中在前3级根序, 这3级根序的根占总根长的78.77%和总根表面积的62.72%。前3级根序的比根长是后3级根序比根长的1.3-3.0倍, 比根面积是后3级比根面积的1.0-1.5倍。按常用的径级(以0.5、1.0、1.5和2.0 mm为阈值)划分方法, 油松幼苗大部分根系直径≤1.5 mm, 此区间细根的根长和根表面积占总根长的93.76%和总根表面积的84.35%。直径≤1.5 mm的细根平均比根长是>1.5 mm细根比根长的3-7倍, 比根面积的1.5-3.0倍。由于油松根序和径级之间有显著的指数关系, 依据径级最大程度反映根序的原则, 提出了新的径级划分方法, 即以0.4、0.8、1.3和2.0 mm为阈值对油松幼苗根系径级重新进行划分。此时, 上述区间可分别包括I级、II级、III级、IV级、V级根序中根尖数的93.22%、86.37%、75.96%、70.47%和76.67%。同时也可分别涵盖各径级根长的89.34%-70.83%、根面积的86.01%-76.12%以及体积的87.73%-76.12%。此时, 根系不同径级与根序之间可以建立起良好的对应关系。这些结果表明, 通过合理划分径级区间可以较好地反映根序 特征。  相似文献   

16.
Translocation and utilization of carbon in wheat (Triticum aestivum)   总被引:1,自引:0,他引:1  
Wheat ( Triticum aestivum L. cv. SUN 9E) was grown in a growth chamber under conditions of low soil nitrogen. Translocation of carbon to the roots and the subsequent utilization of these carbohydrates was determined. In vegetative plants (22 days old), 21.5 mg C day−1 were translocated to the roots. 29% of this was incorporated into dry matter, 32% was respired (28% via the cytochrome and 4% via a SHAM-sensitive, presumably the alternative nonphosphorylating, pathway) and 39% was translocated back to the shoots, mainly in the form of amino acids. – The rote of root maintenance respiration during the vegetative phase was estimated to be 0.7 mg O2 h−1 (g dry weight of roots)−1 and the root growth respiration to be 0.41 g O2 (g dry weight of roots)−1. Total carbohydrate utilization due to root respiration via the alternative, nonphosphorylating pathway during the major part of the growth period was calculated to be only ca 6% of carbohydrate utilization for grain growth. The rate of specific mass transfer (SMT) of sugars in the sieve tubes was estimated from the data on C-translocation and data on the total area occupied by sieve tubes in a cross section of the root system. SMT was calculated to be 0.8 mg sucrose s−1 cm−2, which is very similar to the published value on SMT for other organs, except roots.  相似文献   

17.
不同质地土壤对花生根系生长、分布和产量的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
为了探究土壤类型与花生(Arachis hypogaea)根系生长及产量之间的关系, 采用箱栽的方法, 研究了不同质地土壤(砂土、壤土、黏土)对花生根系生长、分布和产量的影响。砂土和壤土中花生根系干物质重各时期均显著高于黏土中, 但生育后期黏土中花生根系干物质重比壤土和砂土下降相对较慢。从不同类型土壤质地根系分布及根系活力来看, 黏土根系主要分布在上层土壤, 但上层土壤根系活力后期下降慢; 砂土有利于花生根系向深层土壤生长, 但上层土壤根系活力后期下降快; 而壤土对花生根系生长和活力时空分布的影响介于黏土和砂土之间。砂土有利于花生荚果的膨大, 且花生荚果干物质积累早而快, 但后期荚果干物质重积累少; 壤土的花生荚果干物质积累中后期多, 黏土则在整个生育期均不利于花生荚果干物质积累。最终荚果产量、籽仁产量和有效果数均表现为壤土最大、砂土次之、黏土最小。研究表明通气性和保肥保水能力居中的壤土更适合花生的根系生长发育及产量的形成。  相似文献   

18.
Liu Y  Zhu YG  Chen BD  Christie P  Li XL 《Mycorrhiza》2005,15(3):187-192
We report for the first time some effects of colonization by an arbuscular mycorrhizal (AM) fungus (Glomus mosseae) on the biomass and arsenate uptake of an As hyperaccumulator, Pteris vittata. Two arsenic levels (0 and 300 mg As kg–1) were applied to an already contaminated soil in pots with two compartments for plant and hyphal growth in a glasshouse experiment. Arsenic application had little or no effect on mycorrhizal colonization, which was about 50% of root length. Mycorrhizal colonization increased frond dry matter yield, lowered the root/frond weight ratio, and decreased frond As concentration by 33–38%. Nevertheless, transfer of As to fronds showed a 43% increase with mycorrhizal colonization at the higher soil As level. Frond As concentrations reached about 1.6 g kg–1 (dry matter basis) in non-mycorrhizal plants in the As-amended soil. Mycorrhizal colonization elevated root P concentration at both soil As levels and mycorrhizal plants had higher P/As ratios in both fronds and roots than did non-mycorrhizal controls.  相似文献   

19.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

20.
干旱胁迫对不同烤烟品种根系生长和生理特性的影响   总被引:4,自引:0,他引:4  
以抗旱型烤烟品种‘农大202'及一般型烤烟品种‘NC89'和‘K326'为材料,采用盆栽试验研究了干旱胁迫对根系生长和生理特性的影响,以明确各烟草品种的抗旱能力及其与根系生长和生理特性的关系.结果显示:严重干旱胁迫之后各烤烟品种根系鲜重、干重上升,而根系活力、根系吸收面积以及根系SOD和POD活性等根系生理指标则呈下降趋势.在干旱胁迫条件下,‘农大202'的根系总吸收面积、活跃吸收面积、根系活力、SOD活性和POD活性均显著高于两对照品种‘NC89'和‘K326',但其根系鲜重和干重等生物量并不具有太大的优势.研究表明,烟草的根系生长和生理特性对环境水分条件的响应存在明显的基因型差异;在干旱胁迫条件下, ‘农大202'根系能保持较高总吸收面积、活跃吸收面积、根系活力和保护酶活性,是其具有较强抗旱性的生理基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号