首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3H-ABA was introduced into the xylem stream of maize ( Zea mays}) leaves on intact plants by incubation of a semi-attached flap of the sheath in solutions. The relative contribution of exportation and metabolism to the fate of xylem-delivered ABA was assessed in leaves which were either kept at different water potentials through soil drying treatments or subjected to different xylem pHs (pH 7.4 vs. pH 5.5) through a phosphate buffer in the feeding solutions. Xylem-delivered ABA was rapidly metabolised in well-watered leaves with a half-life of 2.19 h in the relatively mature leaves used in this study. Re-exportation of xylem-delivered ABA from leaves was much slower than metabolism. It took 24 h for half of the fed radioactivity to disappear from the well-watered leaves, and very possibly this radioactivity was in the form of metabolites of fed 3H-ABA. Although soil drying usually increases the output of ABA through phloem as reported in previous studies, it greatly reduced the re-exportation of xylem-fed ABA and/or its metabolites. Metabolism was also significantly reduced by the treatment of soil drying (half-life extended from 2.19 to 3.63 h), although the magnitude of change was much less than that of exportation. Manipulation of the pH in the feeding solution also had its effect on the re-exportation. A shift of pH from 5.5 to 7.4 reduced the rate of disappearance of the total radioactivity fed into the attached leaves, but showed no significant effect on the rate of ABA metabolism. It was concluded that it was the ABA metabolism, rather than a re-exportation from leaves, which was mainly responsible for the disposal of the ABA signal from the xylem and therefore preventing an accumulation in leaves. Water stress and pH increase of xylem sap would increase the time of such ABA's presence in the leaves. Since xylem-imported ABA is unlikely to be re-exported from leaves in its intact form, we believe a recycling of ABA from xylem to phloem through leaves plays only a minor role.  相似文献   

2.
干旱胁迫下根系与地上部分之间的信息传递可使植物叶片及时感知土壤水势变化,从而使植物在没有真正受到干旱伤害时即可做出主动、快速的抗旱应答反应,而在这一过程中,脱落酸(abscisic acid,ABA)和pH起着关键的作用。本研究表明。干旱胁迫下鸭趾草(Commelina communis L.)、番茄(Lycopersicon esculentum Mill.)和向日葵(Helianthus annuus L.)木质部汁液中pH的变化很不相同,且该pH变化和木质部汁液中硝态氮离子浓度的变化没有直接的关系;然而,饲喂实验表明,无论对于何种植物,蒸腾流中硝态氮离子浓度的增加都可有效地增加气孔对ABA的敏感度;分根实验进一步表明,土壤中硝态氮营养的增加可明显提高气孔对根信号的敏感度。以上结果说明,氮素营养可以和根信号相互作用共同操纵气孔运动。  相似文献   

3.
By feeding radioactive3H-ABA into attached maize leaves, there-export and metabolism of xylem-delivered ABA and their relationshipswith xylem ABA transpirational fluxes and concentrations wereinvestigated. ABA entering leaves in the transpirational streamwas re-exported out of leaves slowly. Within 24 h the proportionof fed radioactivity that was re-exported was less than 45%.When different concentrations of 3H-ABA (100 nM versus 500 nM)was fed, no difference between the two concentrations was foundin their rates of re-export of the fed radioactivity duringthe first 5 h. After 5 h, very little fed radioactivity wasre-exported in leaves that were fed with 100 nM 3H-ABA, whileleaves that were fed with 500 nM 3H-ABA continued to re-exportsuch that the final proportion remaining in leaves after 24h was less as a result, suggesting a concentration-stimulatedre-export. When 3H-ABA was fed at two different transpirationrates which were induced by different air humidity, a 4-folddifference in transpirational fluxes did not produce any differencein terms of re-exportation of fed radioactivity. The rate ofcatabol-ism of xylem-fed 3H-ABA in the attached leaves was muchfaster than that of re-export. On average fed 3H-ABA had a half-lifeof 2.2 h and only 8% remained unmodified after 24 h of incubation,suggesting that re-exported radioactivity might not be the intactform of ABA at all. Using the parameters obtained from the feeding experiment, wecalculated that in a real soil-drying situation the possiblemaximum amount of xylem-delivered ABA that could accumulatein leaves during a day. It was found that the proportion ofdaily accumulated ABA was only 5% of the leaf ABA in well-wateredplants. In soil-dried plants the maximum amount of daily accumulationby xylem ABA could reach 20% of the leaf ABA at the beginningof soil drying, but it soon declined to about 5% again. Thedeclined contribution was mainly due to a reduced transpirationand an increased total leaf ABA as a result of aggravated leafwater deficit. A tight relationship between leaf conductanceand the accumulation of xylem-delivered ABA was not found. Key words: Abscisic acid, ABA, ABA export, ABA metabolism, xylem-delivered ABA, maize  相似文献   

4.
干旱胁迫下根系与地上部分之间的信息传递可使植物叶片及时感知土壤水势变化, 从而使植物在没有真正受到干旱伤害时即可做出主动、快速的抗旱应答反应, 而在这一过程中, 脱落酸(abscisic acid, ABA)和pH起着关键的作用。本研究表明, 干旱胁迫下鸭趾草(Commelina communis L.)、番茄(Lycopersicon esculentum Mill.)和向日葵(Helianthus annuus L.)木质部汁液中pH的变化很不相同, 且该pH变化和木质部汁液中硝态氮离子浓度的变化没有直接的关系; 然而, 饲喂实验表明, 无论对于何种植物, 蒸腾流中硝态氮离子浓度的增加都可有效地增加气孔对ABA的敏感度; 分根实验进一步表明, 土壤中硝态氮营养的增加可明显提高气孔对根信号的敏感度。以上结果说明, 氮素营养可以和根信号相互作用共同操纵气孔运动。  相似文献   

5.
Drought increased the pH of Commelina communis xylem sap from 6.1 to 6.7. Conductances of transpiring leaves were 50% lower in pH 7.0 than in pH 6.0 buffers, but bulk leaf abscisic acid (ABA) concentration and shoot water status were unaffected by pH. Stomatal apertures of isolated abaxial epidermis incubated on simple buffers increased with external pH, so in vivo this must be overridden by alternative pH effects. Reductions in leaf transpiration rate at pH 7.0 were dependent on the presence of 10-8 mol dm-3 ABA in the xylem stream. We inferred that at pH 7.0 leaf apoplastic ABA concentrations increased: pH did not affect distributions of ABA among leaf tissues, but isolated epidermis and mesophyll tissue took up more 3H-ABA from pH 6.0 than from pH 7.0 buffers. The apoplastic ABA increase at pH 7.0 may result from reduced symplastic sequestration. A portion of 3H-ABA uptake by the epidermis was saturable at pH 6.0 but not at pH 7.0. An ABA uptake carrier may contribute to ABA sequestration by the leaf symplast of well-watered plants, and its inactivity at pH 7.0 may favor apoplastic ABA accumulation in draughted plants. Effects of external pH on stomatal apertures in the isolated epidermis indicate that published data supporting a role for internal guard cell ABA receptors should be reassessed.  相似文献   

6.
When detached maize leaves were fed with an ABA solution viathe xylem, the relationship between the relative stomatal inhibitionand ABA concentrations was similar under different humidityconditions, but the relationship between such inhibition andABA flux was different according to changes of humidity. Tounderstand whether such stomatal behaviour was related to theway through which xylem-delivered ABA was metabolized, detachedleaves of maize and Commelina were fed with tritium-labelled(3H)-ABA at concentrations similar to that found in xylem ofdroughted plants and it was found that xylem-delivered ABA wasmetabolized rapidly in both species. The half-life of ABA metabolism,calculated from the time-related ABA disappearance curve, was42 and 64 min for maize and Commelina, respectively. The veryshort half-life suggests that there is a large capacity in leavesto metabolize xylem-delivered ABA and that metabolism is a majorfactor in the control of ABA accumulation in leaves. When ABAwas fed at different fluxes, either through changing the feedingconcentrations or through manipulating the rates of leaf transpiration(i.e. the volume flux), ABA was metabolized at rates that wereproportional to the amount that was delivered. The absoluterate of ABA metabolism was, therefore, linearly related to theamount of ABA that had arrived. It was found that xylem-deliveredABA reached the epidermis of Commelina, and was metabolizedat the same pattern as that in mesophyll tissues, i.e. at asimilar half-life and at rates constantly related to the amountthat was delivered. The role of the rapid ABA metabolism wasdiscussed in the context of stomatal control by either concentrationor flux of xylem-carried ABA. Key words: Abscisic acid, ABA metabolism, xylem-delivered ABA, maize, Commelina  相似文献   

7.
Root and Shoot Growth of Plants Treated with Abscisic Acid   总被引:4,自引:0,他引:4  
Young seedlings of Capsicum annum L., Commelina communis L.and maize (Zea mays L.) were subjected to a mild water-stressingtreatment and/or treated with abscisic acid (ABA). Plants rootedin soil received a soil-drying treatment and their leaves weresprayed with a 10–4 M solution of ABA. Plants grown insolution culture were stressed by the addition of polyethyleneglycol (PEG) to the rooting medium and ABA was also added tothe rooting medium, either with or without PEG. The effectsof both treatments on the growth of roots and shoots and theultimate root: shoot dry weight ratio were very similar. Shootgrowth was limited both by water stress and by ABA application;while there was some evidence that mild water stress and/orABA application may have resulted in a stimulation of root growth.More severe water stress reduced the growth of roots but theoverall effect of stress was to increase the ratio of rootsto shoots. Capsicum annum L., Commelina communis L., Zea mays L., water stress, abscisic acid  相似文献   

8.
Stomatal conductance of individual leaves was measured in a maize field, together with leaf water potential, leaf turgor, xylem ABA concentration and leaf ABA concentration in the same leaves. Stomatal conductance showed a tight relationship with xylem ABA, but not with the current leaf water status or with the concentration of ABA in the bulk leaf. The relationship between stomatal conductance and xylem [ABA] was common for variations in xylem [ABA] linked to the decline with time of the soil water reserve, to simultaneous differences between plants grown on compacted, non-compacted and irrigated soil, and to plant-to-plant variability. Therefore, this relationship is unlikely to be fortuitous or due to synchronous variations. These results suggest that increased concentration of ABA in the xylem sap in response to stress can control the gas exchange of plants under field conditions.  相似文献   

9.
How Do Stomata Read Abscisic Acid Signals?   总被引:22,自引:2,他引:20       下载免费PDF全文
When abscisic acid (ABA) was fed to isolated epidermis of Commelina communis L., stomata showed marked sensitivity to concentrations of ABA lower than those commonly found in the xylem sap of well-watered plants. Stomata were also sensitive to the flux of hormone molecules across the epidermal strip. Stomata in intact leaves of Phaseolus acutifolius were much less sensitive to ABA delivered through the petiole than were stomata in isolated epidermis, suggesting that mesophyll tissue and/or xylem must substantially reduce the dose or activity of ABA received by guard cells. Delivery of the hormone to the leaf was varied by changing transpiration flux and/or concentration. Varying delivery by up to 7-fold by changing transpiration rate had little effect on conductance. At a given delivery rate, variation in concentration by 1 order of magnitude significantly affected conductance at all but the highest concentration fed. The results are discussed in terms of the control of stomatal behavior in the field, where the delivery of ABA to the leaf will vary greatly as a function of both the concentration of hormone in the xylem and the transpiration rate of the plant.  相似文献   

10.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

11.
Antitranspirant Activity in Xylem Sap of Maize Plants   总被引:18,自引:1,他引:17  
Xylem sap from unwatered maize plants was collected and testedfor antitranspirant activity. Two assays were used. These werea transpiration assay with detached wheat leaves and a stomatalbio-assay involving the direct microscopic observation of epidermisof Commelina communis. The reduction in transpiration of detached wheat leaves promotedby xylem sap could be duplicated almost exactly by the applicationof solutions of ABA of equivalent concentration to that foundin the xylem sap. Removal of virtually all the ABA from thexylem sap, using an immunoaffinity column, removed virtuallyall the antitranspirant activity in both assays. These results are discussed in the context of other resultswhich suggest the presence of as-yet unidentified inhibitorsin the xylem sap of unwatered plants. We suggest that with maize plants at least, stomatal responsesto soil drying can be entirely explained by enhanced concentrationof ABA in the xylem stream. Key words: Antitranspirant activity, ABA, ABA bio-assay, xylem sap  相似文献   

12.
Abstract. Maize seedlings ( Zea mays L. John Innes F1 hybrid) were grown in a greenhouse in l-m-long tubes of soil. When the plants were well established, water was withheld from half of the tubes. Control plants were watered every day during the 20-d experimental period. The soil drying treatment resulted in a substantial restriction of stomatal conductance and a limitation in shoot growth, even though there was no detectable difference in the water relations of watered and unwatered plants. From day 7 of the soil drying treatment, xylem ABA concentrations (measured using the sap exuded from detopped plants) were substantially increased in unwatered plants compared to values recorded with sap from plants watered every day. Measurements of water potential through the profile of unwatered soil suggest that xylem ABA concentrations reflects the extent of soil drying. Leaf ABA content was a much less sensitive indicator of the effect of soil drying and during the whole of experimental period there was no significant difference between ABA concentration in leaves of well watered and unwatered plants. In a second set of experiments, ABA was fed to part of the roots of potted maize plants to manipulate xylem ABA concentration. These manipulations suggested that the increases in ABA concentration in xylem sap, which resulted from soil drying, were adequate to explain the observed variation in stomatal conductance and might also explain the restriction in leaf growth rate. These results are discussed in the light of recent work which suggests that stomatal responses to soil drying are partly attributable to an as-yet unidentified inhibitor of stomatal opening.  相似文献   

13.
一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累   总被引:12,自引:1,他引:11  
以三叶一心期的玉米幼苗为实验材料,研究了盐胁迫下玉米幼苗根尖和叶片中一氧化氮(NO)和脱落酸(ABA)积累之间的关系。结果表明,盐胁迫下玉米幼苗NO和ABA的含量均增加,用NO供体硝普钠(Sodium nitroprusside,SNP)处理时,ABA含量亦增加,且累积的时间较盐胁迫下早。用NO合成的抑制剂L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride)和NaN,处理时,可减弱盐胁迫诱导的ABA含量的增加,用NO清除剂cPTIO处理时,这种盐胁迫诱导的ABA增加减少。推测盐胁迫下产生的NO参与调节ABA的积累及逆境下植物的防御反应。  相似文献   

14.
The stomatal conductance of several anisohydric plant species, including field-grown sunflower, frequently correlates with leaf water potential (φ1), suggesting that chemical messages travelling from roots to shoots may not play an important role in stomatal control. We have performed a series of experiments in which evaporative demand, soil water status and ABA origin (endogenous or artificial) were varied in order to analyse stomatal control. Sunflower plants were subjected to a range of soil water potentials under contrasting air vapour pressure deficits (VPD, from 0.5 to 2.5 kPa) in the field, in the glasshouse or in a humid chamber. Sunflower plants were also fed through the xylem with varying concentrations of artificial ABA, in the glasshouse and in the field. Finally, detached leaves were fed directly with varying concentrations of ABA under three contrasting VPDs. A unique relationship between stomatal conductance (gs) and the concentration of ABA in the xylem sap (xylem [ABA]) was observed in all cases. In contrast, the relationship between φ1 and gs varied substantially among experiments. Its slope was positive for droughted plants and negative for ABA-fed whole plants or detached leaves, and also varied appreciably with air VPD. All observed relationships could be modelled on the basis of the assumption that φ1 had no controlling effect on gs. We conclude that stomatal control depended only on the concentration of ABA in the xylem sap, and that φ1 was controlled by water flux through the plant (itself controlled by stomatal conductance). The possibility is also raised that differences in stomatal ‘strategy’ between isohydric plants (such as maize, where daytime φ1 does not vary appreciably with soil water status) and anisohydric plants (such as sunflower) may be accounted for by the degree of influence of φ1 on stomatal control, for a given level of xylem [ABA]. We propose that statistical relationships between φ1 and gs are only observed when φ1 has no controlling action on stomatal behaviour.  相似文献   

15.
Differences in maximum leaf conductance in grapevine plants growing in soils with contrasting water availabilities during mid-summer in Portugal could be accounted for by differences in the concentration of ABA in xylem sap. This conclusion is reinforced by the observation that the relationship between leaf conductance and endogenous ABA concentration can be mimicked by the application of exogenous ABA to leaves detached from irrigated plants. During the day, leaf conductance decreased after a morning peak, even when the leaves remained in a constant environment at a moderate temperature and leaf-to-air vapour pressure difference. This decline in leaf conductance was not a consequence of an increase in the xylem ABA concentration or the rate of delivery of this compound by the transpiratory stream. The afternoon depression in leaf conductance was associated with an apparent limitation in stomatal opening potential, which persisted even when detached leaves were fed with water and rehydrated. The reason for this inhibition has still to be identified.  相似文献   

16.
以发育的玉米肌为材料。用酶联免疫吸附检测技术测定了玉米胚发育和脱水过程中内源ABA和GA2含量的动态变化,以及它们与胚的脱水耐性形成的关系。结果表明.玉米胚在发育过程中其ABA含量峰值出现在GA2含量峰值之前,而且ABA峰值出现在授粉后28d,晚于胚的含水量下降;胚在脱水过程中ABA和GA2的含量都呈先上升后下降的变化。可以认为在脱水过程中ABA含量的增加是胚对脱水胁迫应激反应的结果.有保护胚的作用;但GA2含量增加的生理机制及其作用尚不清楚。在玉米胚的发育过程中.内源ABA和GA3之间的相对平衡可能主要调控胚的发育进程和萌发力的形成;胚的ABA含量变化可能不足以引起其脱水耐性的形成。  相似文献   

17.
Sunflower plants ( Helianihus animus cv. Tall Single Yellow} were grown in the greenhouse in drain pipes (100 mm inside diameter and 1 m long) rilled with John Innes No. 2 compost. When the fifth leaf had emerged, half of the plants were left unwatered for 6 days, rewatered for 2 days and then not watered for another 12 days. Measurements of water relations and abaxial stomatal conductance were made at each leaf position at regular intervals during the experimental period. Estimates were also made of soil water potentials along the soil profile and of ABA concentrations in xylem sap and leaves.
Soil drying led to some reduction in stomatal conductance alter only 3 days but leaf turgors were not reduced until day 13 (6 days after rewatering). When the water relations of leaves did change, older leases became substantially dehydrated while high turgors were recorded in younger leaves. Leaf ABA content measured on the third youngest leaf hardly changed over the first 13 days of the experiment, despite substantial soil drying, while xylem ABA concentrations changed very significantly and dynamically as soil water status varied, even when there was no effect of soil drying on leaf water relations. We argue that the highest ABA concentrations in the xylem, found as a result of substantial soil drying, arise from synthesis in both the roots and the older leaves, and act to delay the development of water deficit in younger leases.
In other experiments ABA solutions were watered on to the root systems of sunflower plants to increase ABA concentrations in xylem sap. The stomatal response to applied ABA was quantitatively very similar to that to ABA generated as a result of soil drying. There was a log-linear relationship between the reduction of leaf conductance and the increase of ABA concentration m xylem sap.  相似文献   

18.
We highlight the novel observation that the responses of maize leaf growth to abscisic acid (ABA) signals can be amplified both by mild water deficits and by nutrient stress. Under our experimental conditions these stresses alone had no effect on leaf growth rate. In most cases leaf growth responses were not attributable to changes in the turgors of growing cells, focusing attention on a regulatory role for cell wall biochemistry. Roles for xyloglucan endotransglycosylase (XET), expansins and peroxidases are discussed. An effect of drought on the activity of expansins seems particularly attractive if xylem sap pH is considered as a chemical signal. We show how changes in xylem sap pH can also modify local accumulation of ABA and thereby modify the apparent sensitivity of guard cells to ABA signals.  相似文献   

19.
Sensitivity of Stomata to Abscisic Acid (An Effect of the Mesophyll)   总被引:16,自引:3,他引:13       下载免费PDF全文
Trejo CL  Davies WJ  Ruiz L 《Plant physiology》1993,102(2):497-502
The effects of added abscisic acid (ABA) on the stomatal behavior of Commelina communis L. were tested using three different systems. ABA was applied to isolated epidermis or to leaf pieces incubated in the light in bathing solutions perfused with CO2-free air. ABA was also fed to detached leaves in a transpiration bioassay. The apparent sensitivity of stomata to ABA was highly dependent on the method used to feed ABA. Stomata of isolated epidermis were apparently most sensitive to ABA, such that a concentration of 1 [mu]M caused almost complete stomatal closure. When pieces of whole leaves were floated on solutions of ABA of the same concentration, the stomata were almost completely open. The same concentration of ABA fed through the midrib of transpiring detached leaves caused an intermediate response. These differences in stomatal sensitivity to added ABA were found to be a function of differences in the ABA concentration in the epidermes. Comparison of the three application systems suggested that, when leaf pieces were incubated in ABA or fed with ABA through the midrib, accumulation of ABA in the epidermes was limited by the presence of the mesophyll. Even bare mesophyll incubated in ABA solution did not accumulate ABA. Accumulation of radioactivity by leaf pieces floated on [3H]ABA confirmed ABA uptake in this system. Experiments with tetcyclacis, an inhibitor of phaseic acid formation, suggested that rapid metabolism of ABA in mesophyll can have a controlling influence on ABA concentration in both the mesophyll and the epidermis. Inhibition of ABA catabolism with tetcyclacis allows ABA accumulation and increases the apparent sensitivity of stomata to applied ABA. The results are discussed in the context of an important role for ABA metabolism in the regulation of stomatal behavior.  相似文献   

20.
The role of ABA as the primary long-distance signal produced by water-stressed roots and transported to stomata continues to be challenged. We have recently reported that expression of ABA biosynthetic genes in roots only increases in the later stage of water stress. Our results support the hypothesis that in early water stress, increased levels of ABA in xylem sap are due to leaf biosynthesis and translocation to roots and from there to xylem. If so, other xylem-borne chemicals may be the primary stress signal(s) inducing ABA biosynthesis in leaves. We found that apart from ABA, sulfate was the only xylem-borne chemical that consistently showed higher concentrations from early to later water stress. We also found increased expression of a sulfate transporter gene in roots from early water stress onwards. Moreover, using bioassays we found an interactive effect of ABA and sulfate in decreasing maize transpiration rate, as compared to ABA alone. While ABA is undoubtedly the key mediator of water stress responses such as stomatal closure, it may not be the primary signal produced by roots perceiving water stress.Key words: abscisic acid, ABA biosynthesis, corn, drought, maize, malate, pH, stomatal conductance, sulfate, Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号