首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Cariaco system is the second largest permanently anoxic marine water body in the world. Its water column is characterized by a pronounced vertical layering of microbial communities. The goal of our study was to investigate the vertical distribution and diversity of Vibrio spp. present in the Cariaco Basin waters using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments. Representatives of the Vibrio genus were detected by nested and direct PCR in seawater at 10 depths. Sequence analyses of 55 DGGE bands revealed that only 11 different operational taxonomic units (OTU) are identified as Vibrio species. Between one and five OTUs were detected at each depth and the most common OTUs were OTU 1 and OTU 2, which phylogenetically clustered with Vibrio chagasii and Vibrio fortis, respectively. OTUs 3 and 4 were only found in the anoxic zone and were identified as Vibrio orientalis and Vibrio neptunius, respectively. Several Vibrio species detected are potentially pathogenic to human, prawns and corals such as Vibrio parahaemolyticus, Vibrio fischeri and Vibrio shilonii. In the Cariaco Basin, different Vibrio species were found to be specific to specific depths strata, suggesting that this genus is a natural component of the microbial communities in this marine redox environment.  相似文献   

2.
Newly described phylogenetic lineages within the domain Archaea have recently been found to be significant components of marine picoplankton assemblages. To better understand the ecology of these microorganisms, we investigated the relative abundance, distribution, and phylogenetic composition of Archaea in the Santa Barbara Channel. Significant amounts of archaeal rRNA and rDNA (genes coding for rRNA) were detected in all samples analyzed. The relative abundance of archaeal rRNA as measured by quantitative oligonucleotide hybridization experiments was low in surface waters but reached higher values (20 to 30% of prokaryotic rRNA) at depths below 100 m. Probes were developed for the two major groups of marine Archaea detected. rRNA originating from the euryarchaeal group (group II) was most abundant in surface waters, whereas rRNA from the crenarchaeal group (group I) dominated at depth. Clone libraries of PCR-amplified archaeal rRNA genes were constructed with samples from 0 and 200 m deep. Screening of libraries by hybridization with specific oligonucleotide probes, as well as subsequent sequencing of the cloned genes, indicated that virtually all archaeal rDNA clones recovered belonged to one of the two groups. The recovery of cloned rDNA sequence types in depth profiles exhibited the same trends as were observed in quantitative rRNA hybridization experiments. One representative of each of 18 distinct restriction fragment length polymorphism types was partially sequenced. Recovered sequences spanned most of the previously reported phylogenetic diversity detected in planktonic crenarchaeal and euryarchaeal groups. Several rDNA sequences appeared to be harbored in archaeal types which are widely distributed in marine coastal waters. In total, data suggest that marine planktonic crenarchaea and euryarchaea of temperate coastal habitats thrive in different zones of the water column. The relative rRNA abundance of the crenarchaeal group suggests that its members constitute a significant fraction of the prokaryotic biomass in subsurface coastal waters.  相似文献   

3.
The phylogenetic diversity of archaeal 16S rRNA genes in a thermoacidic spring field of Ohwakudani, Hakone, Japan, was investigated by PCR-based analysis using a novel Archaea-specific primer designed in the present study. Clone libraries of archaeal 16S rRNA genes were constructed from hot water (78 °C) and mud (28 °C) samples by PCR using a newly designed forward primer and a previously reported forward primer with reverse primers. Most phylotypes found in the libraries from the hot water sample were related to cultured (hyper)thermophiles. The phylotypes and their detection frequencies from the hot water sample were similar for the libraries amplified with the two different primer sets. In contrast, phylotypes having a low similarity (<95%) to cultured Archaea were found in the libraries from the mud sample. Some of the phylotypes were relatively close to members of Thermoplasmata (80-93% similarity) and the others were not clearly affiliated with Crenarchaeota and Euryarchaeota, but related to Thaumarchaeota and Korarchaeota. The phylotypes and their detection frequencies were significantly different between the two libraries of the mud sample. Our results from the PCR-based analysis using the redesigned primer suggest that more diverse, uncultured Archaea are present in acidic environments at a low temperature than previously recognized.  相似文献   

4.
Archaeal Diversity in the Haloalkaline Lake Elmenteita in Kenya   总被引:1,自引:0,他引:1  
A non-culture approach was used to study the archaeal diversity in Lake Elmenteita, Kenya. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from these samples and the 16S rRNA genes were amplified using primers described to be Domain-specific for Archaea. Eleven clone libraries were constructed using PCR-amplified 16S rRNA genes. A total of 1,399 clones were picked and analysed via ARDRA. 170 ARDRA patterns were unique and the respective clones were selected for sequencing. 149 clones gave analysable sequences. BLAST analysis showed that 49 belong to the Domain Archaea while the others were either chimera or affiliated to eukaryotic taxa. Comparative sequence analysis of archaeal clones affiliated them to a wide range of genera. The order Halobacteriales was represented by members of the genera Natronococcus, Halovivax, Halobiforma, Halorubrum, and Halalkalicoccus. The highest percentage (46%) of the clones, however, belonged to uncultured members of the Domain Archaea in the order Halobacteriales. The results show that the archaeal diversity in the lake could be higher than previously reported.  相似文献   

5.
Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the epsilon subdivision of the Proteobacteria (epsilon-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the division Verrucomicrobia, the division Proteobacteria, and the OP3 candidate division. The Proteobacteria included members of the gamma, delta, epsilon and new candidate subdivisions, and gamma-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the epsilon-proteobacteria belonged to the ESR group. The genus Fibrobacter and its relatives were the second largest group in the library (23.6%), followed by the delta-proteobacteria and the epsilon-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the Proteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the beta, gamma, delta, and epsilon-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to be related to the Eel-TA1f2 sequence, which belongs to an archaeon suggested to be able to oxidize methane anaerobically. Based on phylogenetic inferences and measurements of dark CO(2) fixation, we hypothesized that (i) the ESR are autotrophic anaerobic sulfide oxidizers, (ii) sulfate reduction and fermentative metabolism may be carried out by a large number of bacteria in the 500- and 1,310-m libraries, and (iii) members of the Euryarchaeota found in relatively large numbers in the 1,310-m library may be involved in anaerobic methane oxidation. Overall, the composition of microbial communities from the Cariaco Basin resembles the compositions of communities from several anaerobic sediments, supporting the hypothesis that the Cariaco Basin water column is similar to anaerobic sediments.  相似文献   

6.
Few studies have addressed the occurrence of fungi in deep-sea sediments, characterized by elevated hydrostatic pressure, low temperature, and fluctuating nutrient conditions. We evaluated the diversity of fungi at three locations of the Central Indian Basin (CIB) at a depth of ~5,000 m using culture-independent approach. Community DNA isolated from these sediments was amplified using universal and fungal-specific internal transcribed spacers and universal 18S rDNA primer pairs. A total of 39 fungal operational taxonomic units, with 32 distinct fungal taxa were recovered from 768 clones generated from 16 environmental clone libraries. The application of multiple primers enabled the recovery of eight sequences that appeared to be new. The majority of the recovered sequences belonged to diverse phylotypes of Ascomycota and Basidiomycota. Our results suggested the existence of cosmopolitan marine fungi in the sediments of CIB. This study further demonstrated that diversity of fungi varied spatially in the CIB. Individual primer set appeared to amplify different fungal taxa occasionally. This is the first report on culture-independent diversity of fungi from the Indian Ocean.  相似文献   

7.
Increasing evidence of the fungal diversity in deep-sea sediments has come from amplification of environmental DNA with fungal specific or eukaryote primer sets. In order to assess the fungal diversity in deep-sea sediments of the Central Indian Basin (CIB) at ~5,000 m depth, we amplified sediment DNA with four different primer sets. These were fungal-specific primer pair ITS1F/ITS4 (internal transcribed spacers), universal 18S rDNA primers NS1/NS2, Euk18S-42F/Euk18S-1492R and Euk18S-555F/Euk18S-1269R. One environmental library was constructed with each of the primer pairs, and 48 clones were sequenced per library. These sequences resulted in 8 fungal Operational Taxonomic Units (OTUs) with ITS and 19 OTUs with 18S rDNA primer sets respectively by taking into account the 2% sequence divergence cut-off for species delineation. These OTUs belonged to 20 distinct fungal genera of the phyla Ascomycota and Basidiomycota. Seven sequences were found to be divergent by 79–97% from the known sequences of the existing database and may be novel. A majority of the sequences clustered with known sequences of the existing taxa. The phylogenetic affiliation of a few fungal sequences with known environmental sequences from marine and hypersaline habitat suggests their autochthonous nature or adaptation to marine habitat. The amplification of sequences belonging to Exobasidiomycetes and Cystobasidiomycetes from deep-sea is being reported for the first time in this study. Amplification of fungal sequences with eukaryotic as well as fungal specific primers indicates that among eukaryotes, fungi appear to be a dominant group in the sampling site of the CIB.  相似文献   

8.
The Cariaco Basin off the Venezuelan coast in the Caribbean Sea is the world's largest truly marine body of anoxic water. The first rRNA survey of microbial eukaryotes in this environment revealed a number of novel lineages, but sampled only a fraction of the entire diversity. The goal of this study was to significantly improve recovery of protistan rRNA from the Basin. This was achieved by a systematic application of multiple PCR primer sets and substantially larger sequencing efforts. We focused on the most diverse habitat in the basin, anoxic waters approximately 100m below the oxic-anoxic interface, and detected novel lineages that escaped the single PCR primer approach. All clones obtained proved unique. A 99% sequence similarity cut-off value combined these clones into operational taxonomic units (OTUs), over 75% of which proved novel. Some of these OTUs form deep branches within established protistan groups. Others signify discovery of novel protistan lineages that appear unrelated to any known microeukaryote. Surprisingly, even this large-scale multi-primer rRNA approach still missed a substantial part of the samples' rRNA diversity. The overlap between the species lists obtained with different primers is low, with only 4% of OTUs shared by all three libraries, and the number of species detected only once is large (55%). This strongly indicates that, at least in anoxic environments, protistan diversity may be much larger than is commonly thought. A single sample appears to contain thousands of largely novel protistan species. Multiple PCR primer combinations may be needed to capture these species.  相似文献   

9.
We compared the phylogenetic compositions of marine planktonic archaeal populations in different marine provinces. Samples from eight different environments were collected at two depths (surface and aphotic zone), and 16 genetic libraries of PCR-amplified archaeal 16S rRNA genes were constructed. The libraries were analyzed by using a three-step hierarchical approach. Membrane hybridization experiments revealed that most of the archaeal clones were affiliated with one of the two groups of marine archaea described previously, crenarchaeotal group I and euryarchaeotal group II. One of the 2,328 ribosomal DNA clones analyzed was related to a different euryarchaeal lineage, which was recently recovered from deep-water marine plankton. In temperate regions (Pacific Ocean, Atlantic Ocean, and Mediterranean Sea) both major groups were found at the two depths investigated; group II predominated at the surface, and group I predominated at depth. In Antarctic and subantarctic waters group II was practically absent. The clonal compositions of archaeal libraries were investigated by performing a restriction fragment length polymorphism (RFLP) analysis with two tetrameric restriction enzymes, which defined discrete operational taxonomic units (OTUs). The OTUs defined in this way were phylogenetically consistent; clones belonging to the same OTU were closely related. The clonal diversity as determined by the RFLP analysis was low, and most libraries were dominated by only one or two OTUs. Some OTUs were found in samples obtained from very distant places, indicating that some phylotypes were ubiquitous. A tree containing one example of each OTU detected was constructed, and this tree revealed that there were several clusters within archaeal group I and group II. The members of some of these clusters had different depth distributions.  相似文献   

10.
We compared the phylogenetic compositions of marine planktonic archaeal populations in different marine provinces. Samples from eight different environments were collected at two depths (surface and aphotic zone), and 16 genetic libraries of PCR-amplified archaeal 16S rRNA genes were constructed. The libraries were analyzed by using a three-step hierarchical approach. Membrane hybridization experiments revealed that most of the archaeal clones were affiliated with one of the two groups of marine archaea described previously, crenarchaeotal group I and euryarchaeotal group II. One of the 2,328 ribosomal DNA clones analyzed was related to a different euryarchaeal lineage, which was recently recovered from deep-water marine plankton. In temperate regions (Pacific Ocean, Atlantic Ocean, and Mediterranean Sea) both major groups were found at the two depths investigated; group II predominated at the surface, and group I predominated at depth. In Antarctic and subantarctic waters group II was practically absent. The clonal compositions of archaeal libraries were investigated by performing a restriction fragment length polymorphism (RFLP) analysis with two tetrameric restriction enzymes, which defined discrete operational taxonomic units (OTUs). The OTUs defined in this way were phylogenetically consistent; clones belonging to the same OTU were closely related. The clonal diversity as determined by the RFLP analysis was low, and most libraries were dominated by only one or two OTUs. Some OTUs were found in samples obtained from very distant places, indicating that some phylotypes were ubiquitous. A tree containing one example of each OTU detected was constructed, and this tree revealed that there were several clusters within archaeal group I and group II. The members of some of these clusters had different depth distributions.  相似文献   

11.
Aims:  To screen a pair of primers suitable for denaturing gradient gel electrophoretic (DGGE) analysis of ruminal methanogenic Archaea and to detect the archaeal communities in the rumen of goat.
Methods and Results:  Nine primer pairs for 16S rDNA of methanogenic Archaea , including six for directed polymerase chain reaction (PCR) and three for nested PCR were first evaluated by PCR amplification of the total DNA from rumen fluids and bacteria. The DGGE analysis of rumen fluids was then conducted with three primer sets (344fGC/915r, 1106fGC/1378r and 519f/915rGC) of the nine pairs tested. Good separation and quality of patterns were obtained in DGGE analysis with primer pairs 1106fGC/1378r and 519f/915rGC. A total of 40 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic Archaea while primer pair 519f/915rGC had better amplification ranges than the other two primer pairs.
Conclusions:  The procedure of DGGE analysis with primer pair 519f/915rGC was more suitable for investigating methanogenic archaeal community in the rumen. The dominant methanogenic Archaea in the rumen of goat was Methanobrevibacter sp. and an unidentified methanogenic Archaea .
Significance and Impact of the Study:  One pair of primers suitable for DGGE analysis of ruminal methanogenic Archaea was obtained and the molecular diversity of ruminal methanogenic Archaea in goat was investigated by PCR-DGGE.  相似文献   

12.
The molecular diversity of Archaea in a bat guano pile in Cave Domica (Slovakia), temperate cave ecosystem with significant bat colony (about 1600 individuals), was examined. The guano pile was created mainly by an activity of the Mediterranean horseshoe bat (Rhinolophus euryale) and provides a source of organic carbon and other nutrients in the oligotrophic subsurface ecosystem. The upper and the basal parts of guano surface were sampled where the latter one had higher pH and higher admixture of limestone bedrock and increased colonization of invertebrates. The relative proportion of Archaea determined using CARD-FISH in both parts was 3.5–3.9 % (the basal and upper part, respectively). The archaeal community was dominated by non-thermophilic Crenarchaeota (99 % of clones). Phylogenetic analysis of 115 16S rDNA sequences revealed the presence of Crenarchaeota previously isolated from temperate surface soils (group 1.1b, 62 clones), deep subsurface acid waters (group 1.1a, 52 clones) and Euryarchaeota (1 clone). Four of the analyzed sequences were found to have little similarity to those in public databases. The composition of both archaeal communities differed, with respect to higher diversity of Archaea in the upper part of the bat guano pile. High diversity archaeal population is present in the bat guano deposit and consists of both soil- and subsurface-born Crenarchaeota.  相似文献   

13.
The diversity and structure of the archaeal community in the effluent leachate from a full-scale recirculating landfill was characterized by direct 16S rRNA gene (16S rDNA) retrieval. Total-community DNA was extracted from the microbial assemblages in the landfill leachate, and archaeal 16S rDNAs were amplified with a universally conserved primer and an Archaea-specific primer. The amplification product was then used to construct a 16S rDNA clone library, and 70 randomly selected archaeal clones in the library were grouped by restriction fragment length polymorphism (RFLP) analysis. Sequencing and phylogenetic analysis of representatives from each unique RFLP type showed that the archaeal library was dominated by methanogen-like rDNAs. Represented in the kingdom of Euryarchaeota were phylotypes highly similar to the methanogenic genera Methanoculleus, Methanosarcina, Methanocorpusculum, Methanospirillum and Methanogenium, where the clone distribution was 48, 11, 3, 1 and 1, respectively. No sequences related to known Methanosaeta spp. were retrieved. Four rDNA clones were not affiliated with the known methanogenic Archaea, but instead, they were clustered with the uncultured archaeal sequences recently recovered from anaerobic habitats. Two chimeric sequences were identified among the clones analyzed.  相似文献   

14.
Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.  相似文献   

15.
High abundance of Crenarchaeota in a temperate acidic forest soil   总被引:2,自引:0,他引:2  
The objective of the study was to elucidate the depth distribution and community composition of Archaea in a temperate acidic forest soil. Numbers of Archaea and Bacteria were measured in the upper 18 cm of the soil, and soil cores were sampled on two separate occasions using quantitative PCR targeting 16S rRNA genes. Maximum numbers of Archaea were 0.6-3.8 x 10(8) 16S rRNA genes per gram of dry soil. Numbers of Bacteria were generally higher, but Archaea always accounted for a high percentage of the total gene numbers (12-38%). The archaeal community structure was analysed by the construction of clone libraries and by terminal restriction length polymorphism (T-RFLP) using the same Archaea-specific primers. With the reverse primer labelled, T-RFLP analysis led to the detection of four T-RFs. Three had lengths of 83, 185 and 218 bp and corresponded to uncultured Crenarchaeota. One (447 bp) was assigned to Thermoplasmales. Labelling of the forward primer allowed further separation of the T-RF into Crenarchaeota Group I.1c and Group I.1b, and indicated that Crenarchaeota of the Group I.1c were the predominant 16S rRNA genotype (相似文献   

16.
Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.  相似文献   

17.
Using a polyphasic approach, we examined the presence of Archaea in the Gulf of Aqaba, a warm marine ecosystem, isolated from major ocean currents and subject to pronounced seasonal changes in hydrography. Catalyzed reported deposition FISH analyses showed that Archaea make up to >20% of the prokaryotic community in the Gulf. A spatial separation between the two major phyla of Archaea was observed during summer stratification. Euryarchaeota were found exclusively in the upper 200 m, whereas Crenarchaeota were present in greater numbers in layers below the summer thermocline. 16S rRNA gene-based denaturing gradient gel electrophoresis confirmed this depth partitioning and revealed further diversity of Crenarchaeota and Euryarchaeota populations along depth profiles. Phylogenetic analysis showed pelagic Crenarchaeota and Euryarchaeota to differ from coral-associated Archaea from the Gulf, forming distinct clusters within the Marine Archaea Groups I and II. Endsequencing of fosmid libraries of environmental DNA provided a tentative identification of some members of the archaeal community and their role in the microbial community of the Gulf. Incorporation studies of radiolabeled leucine and bicarbonate in the presence of different inhibitors suggest that the archaeal community participates in autotrophic CO2 uptake and contributes little to the heterotrophic activity.  相似文献   

18.
Molecular surveys suggest that communities of microbial eukaryotes are remarkably rich, because even large clone libraries seem to capture only a minority of species. This provides a qualitative picture of protistan richness but does not measure its real extent either locally or globally. Statistical analysis can estimate a community's richness, but the specific methods used to date are not always well grounded in statistical theory. Here we study a large protistan molecular survey from an anoxic water column in the Cariaco Basin (Caribbean Sea). We group individual 18S rRNA gene sequences into operational taxonomic units (OTUs) using different cutoff values for sequence similarity (99 to 50%) and systematically apply parametric models and nonparametric estimators to the OTU frequency data to estimate the total protistan diversity. The parametric models provided statistically sound estimates of protistan richness, with biologically meaningful standard errors, maximal data usage, and extensive model diagnostics and were preferable to the available nonparametric tools. Our clone library exceeded 700 clones but still covered only a minority of species and less than half of the larger protistan clades. Our estimates of total protistan richness portray the target community as very rich at all OTU levels, with hundreds of different populations apparently co-occurring in the small (3-liter) volume of our sample, as well as dozens of clades of the highest taxonomic order. These estimates are among the first for microbial eukaryotes that are obtained using state-of-the-art statistical methods and can serve as benchmark numbers for the local diversity of protists.  相似文献   

19.
Molecular surveys suggest that communities of microbial eukaryotes are remarkably rich, because even large clone libraries seem to capture only a minority of species. This provides a qualitative picture of protistan richness but does not measure its real extent either locally or globally. Statistical analysis can estimate a community's richness, but the specific methods used to date are not always well grounded in statistical theory. Here we study a large protistan molecular survey from an anoxic water column in the Cariaco Basin (Caribbean Sea). We group individual 18S rRNA gene sequences into operational taxonomic units (OTUs) using different cutoff values for sequence similarity (99 to 50%) and systematically apply parametric models and nonparametric estimators to the OTU frequency data to estimate the total protistan diversity. The parametric models provided statistically sound estimates of protistan richness, with biologically meaningful standard errors, maximal data usage, and extensive model diagnostics and were preferable to the available nonparametric tools. Our clone library exceeded 700 clones but still covered only a minority of species and less than half of the larger protistan clades. Our estimates of total protistan richness portray the target community as very rich at all OTU levels, with hundreds of different populations apparently co-occurring in the small (3-liter) volume of our sample, as well as dozens of clades of the highest taxonomic order. These estimates are among the first for microbial eukaryotes that are obtained using state-of-the-art statistical methods and can serve as benchmark numbers for the local diversity of protists.  相似文献   

20.
Four fungal 18S rDNA and internal transcribed spacer (ITS) polymerase chain reaction (PCR) primer pairs were tested for their specificity towards target fungal DNA in soil DNA extracts, and their ability to assess the diversity of fungal communities in a natural grassland soil was compared. Amplified PCR products were cloned, and approximately 50 clones from each library were sequenced. Phylogenetic analysis and database searches indicated that each of the sequenced cloned DNA fragments was of fungal origin for each primer pair, with the exception of the sequences generated using the 18S rDNA primers nu-SSU-0817 and nu-SSU-1196, where 35 of the 50 sequenced clones represented soil invertebrates. Although some of the primers have previously been suggested to be biased towards certain fungal taxonomic groups, the ratio of sequences representing each of the four main fungal phyla, Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota, was similar for each of the primer pairs, suggesting that primer bias may be less significant than previously thought. Collector's curves were plotted to estimate the coverage obtained for each of the clone libraries after clustering the sequences into operational taxonomic units at a level of 99% sequence similarity. The curves indicated that good coverage of diversity was achieved, with the exception of the clone library constructed using primers nu-SSU-0817 and nu-SSU-1196, on account of the high number of non-fungal sequences obtained. The work demonstrates the usefulness of 18S rDNA and ITS PCR primers for assessing fungal diversity in environmental samples, and it also highlights some potential limitations of the approach with respect to PCR primer specificity and bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号