首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The subcellular localization of protein kinase C (PKC)-δ was determined in HL60 cells differentiated toward monocytes/macrophages by treatment with TPA. PKC-δ was detected in the nucleus and cytoplasm of differentiated HL60 cells and, more specifically, associated with structures resembling intermediate filaments. Indirect immunostaining revealed that PKC-δ colocalized with vimentin in the cytosol and perinuclear region of these cells. Immunoprecipitation studies showed that PKC-δ was in an active (autophosphorylated) state in differentiated HL60 cells and that vimentin immunoprecipitated from these cells was also phosphorylated. Treatment of HL60 cells with the PKC-specific inhibitor chelerythrine decreased the phosphorylation of vimentin. These data suggest that vimentin is a substrate for PKC-δ and that this PKC isoenzyme may play a specific role in the regulation of shape change and cell adhesion during HL60 differentiation.  相似文献   

2.
The α-catenin molecule links E-cadherin/ β-catenin or E-cadherin/plakoglobin complexes to the actin cytoskeleton. We studied several invasive human colon carcinoma cell lines lacking α-catenin. They showed a solitary and rounded morphotype that correlated with increased invasiveness. These round cell variants acquired a more normal epithelial phenotype upon transfection with an α-catenin expression plasmid, but also upon treatment with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Video registrations showed that the cells started to establish elaborated intercellular junctions within 30 min after addition of TPA. Interestingly, this normalizing TPA effect was not associated with α-catenin induction. Classical and confocal immunofluorescence showed only minor TPA-induced changes in E-cadherin staining. In contrast, desmosomal and tight junctional proteins were dramatically rearranged, with a conversion from cytoplasmic clusters to obvious concentration at cell–cell contacts and exposition at the exterior cell surface. Electron microscopical observations revealed the TPA-induced appearance of typical desmosomal plaques. TPA-restored cell–cell adhesion was E-cadherin dependent as demonstrated by a blocking antibody in a cell aggregation assay. Addition of an antibody against the extracellular part of desmoglein-2 blocked the TPA effect, too. Remarkably, the combination of anti–E-cadherin and anti-desmoglein antibodies synergistically inhibited the TPA effect.

Our studies show that it is possible to bypass the need for normal α-catenin expression to establish tight intercellular adhesion by epithelial cells. Apparently, the underlying mechanism comprises upregulation of desmosomes and tight junctions by activation of the PKC signaling pathway, whereas E-cadherin remains essential for basic cell–cell adhesion, even in the absence of α-catenin.

  相似文献   

3.
Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor α5β1 and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin−/− knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.  相似文献   

4.
This paper presents further investigation of the properties of carbohydrate II in the cell adhesion molecule, contact site A, fromDictyostelium discoideum.A purified contact site A was digested withAchromobacterprotease I to produce a 31-kDa fragment to which carbohydrate II was mainly bound and a 21-kDa fragment containing the NH2terminus of contact site A, which was identified as Ala-Pro-Thr-Ile-Thr-Ala. The NH2terminus of the 31-kDa fragment was Thr-Glu-Ala-Thr-Thr-Ser. It was estimated from the cDNA sequence data of contact site A that more than 20 Ser/Thr residues exist as target sites for the O-linked oligosaccharides in the 31-kDa fragment, but not for the N-linked oligosaccharides. These results suggest that carbohydrate II exists as clustered O-linked oligosaccharides in the COOH terminus of contact site A. The results of two-dimensional electrophoresis confirm that oligosaccharides of contact site A contain sialic acids. Immunoelectron microscopy was carried out to define the organelle in which O-glycosylation by carbohydrate II occurs and how carbohydrate II antigens are distributed on the cell surface. The results show that O-glycosylation can occur in the Golgi apparatus inD. discoideumas observed in other cells, although this O-glycosylation was inhibited by tunicamycin. Furthermore, gold particles were densely concentrated in cell–cell contact regions but sparsely distributed in noncontact regions.  相似文献   

5.
The Very Late Activation Antigen (VLA) proteins are a family of five related heterodimers, which also are part of the integrin superfamily of cell adhesion molecules. Except for the identification of VLA-5 as a fibronectin receptor structure, the functions of the VLA proteins have remained unclarified. In this paper, immunoprecipitation experiments with both anti-alpha and anti-beta subunit antibodies showed that the previously identified cell adhesion receptor for collagen, extracellular matrix receptor II (ECMRII), is equivalent to VLA-2. At the same time a previously described multispecific cell adhesion receptor for collagen, fibronectin, and laminin (ECMRI) has been shown to be identical to VLA-3. Although the mAb 12F1 and P1H5 both recognized VLA-2 (ECMRII), they appeared to define distinct epitopes on the alpha 2 subunit. On the other hand, the mAb P1B5 and J143 recognized the alpha 3 subunit of VLA-3 (ECMRI) at or near the same site. Consistent with the collagen receptor functions of VLA-2 (ECMRII) and VLA-3 (ECMRI), anti-VLA beta antiserum blocked cell attachment to collagen.  相似文献   

6.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

7.
Histochemical characterization of the equine guttural pouches was performed using lectins combined with sialidase digestion and deglycosylation pre-treatments.The goblet cells contained O- and N-linked oligosaccharides with α-Fuc, GlcNAc moieties whereas β-GalNAc, β-Gal-(1–3)-GalNAc, β-Gal-(1–4)-GlcNAc and α-Gal residues belonged only to O-linked glycoproteins. The acinar and ductal cells expressed α-Man/α-Glc in N-linked oligosaccharides, GlcNAc in both O- and N-glycoproteins and β-GalNAc, β-Gal-(1–3)-GalNAc, β-Gal-(1–4)-GlcNAc and α-Gal residues included in O-linked glycoproteins. The Golgi area of the epithelial lining expressed α-Fuc in O-linked glycoproteins, internal GlcNAc in N-linked glycoproteins and large amounts of sialic acid residues linked to subterminal β-GalNAc, Galβ1,4GlcNAc and Galβ1,3GalNAc. High amounts of sulpho-carbohydrates and of sialic acids (α2,3–6), linked to-α/β-Gal and sialic acids (α2–6) linked to β-GalNAc, were also demonstrated.Such diversity of the mucin saccharide residues may be implicated in the binding of macromolecules such as those of bacterial or viral etiology, thus playing a role in the organism's host-defense mechanism in the guttural pouches.  相似文献   

8.
The aim of this work was the characterization of the glycoconjugates of the premeiotic spermatogenetic cells of the testis of an urodele amphibian, Pleurodeles waltl, by means of lectins in combination with several chemical and enzymatic procedures, in order to establish the distribution of N- and O-linked oligosaccharides in these cells. In the cytoplasm of the primordial germ cells, primary and secondary spermatogonia and primary spermatocytes, a granular structure can be observed close to the nucleus. These granules contain four types of sugar chains according to their appearance during the differentiation process: 1. some oligosaccharides that are identified in all the four cell types above mentioned, which include N-linked oligosaccharides with Fuc, Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc and O-linked oligosaccharides with Gal beta1,4GlcNAc and Neu5Ac alpha2,3Gal beta1,4GlcNAc; 2. other glycan chains that are not present in the primary spermatocytes (N-linked oligosaccharides with DBA-positive GalNAc, GlcNAc, and a slight amount of Neu5Ac alpha2,6Gal/GalNAc and O-linked oligosaccharides with WGA-positive GlcNAc); 3. the sugar chains that are not in the earliest step of spermatogenesis (formed by both N-linked and O-linked oligosaccharides with Glc); and 4. other that appear at the earliest and latest stages, but not in the intermediate ones, (N-linked oligosaccharides with Man and O-linked oligosaccharides with SBA- and HPA-positive GalNAc and PNA-positive Gal beta1,3GalNAc). This structure could be related with the Drosophila spectrosome and fusome, unusual cytoplasmic organelles implicated in cystic germ cell development. Data from the present work, as compared with those from mammals and other vertebrates, suggest that, although no dramatic changes in the glycosylation pattern are observed, some cell glycoconjugates are modified in a predetermined way during the early steps of the spermatogenetic differentiation process.  相似文献   

9.
Leukocyte activation is a complex process that involves multiple cross- regulated cell adhesion events. In this report, we investigated the role of intercellular adhesion molecule-3 (ICAM-3), the third identified ligand for the beta 2 integrin leukocyte function-associated antigen-1 (LFA-1), in the regulation of leukocyte adhesion to ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and the 38- and 80-kD fragments of fibronectin (FN40 and FN80). The activating anti-ICAM-3 HP2/19, but not other anti-ICAM-3 mAb, was able to enhance T lymphoblast adhesion to these proteins when combined with very low doses of anti-CD3 mAb, which were unable by themselves to induce this phenomenon. In contrast, anti-ICAM-1 mAb did not enhance T cell attachment to these substrata. T cell adhesion to ICAM-1, VCAM-1, FN40, and FN80 was specifically blocked by anti-LFA-1, anti-VLA alpha 4, and anti-VLA alpha 5 mAb, respectively. The activating anti-ICAM-3 HP2/19 was also able to specifically enhance the VLA-4- and VLA-5-mediated binding of leukemic T Jurkat cells to VCAM-1, FN40, and FN80, even in the absence of cooccupancy of the CD3-TcR complex. We also studied the localization of ICAM-3, LFA-1, and the VLA beta 1 integrin, by immunofluorescence microscopy, on cells interacting with ICAM-1, VCAM-1 and FN80. We found that the anti-ICAM-3 HP2/19 mAb specifically promoted a dramatic change on the morphology of T lymphoblasts when these cells were allowed to interact with those adhesion ligands. Under these conditions, it was observed that a large cell contact area from which an uropod-like structure (heading uropod) was projected toward the outer milieu. However, when T blasts were stimulated with other adhesion promoting agents as the activating anti-VLA beta 1 TS2/16 mAb or phorbol esters, this structure was not detected. The anti-ICAM-3 TP1/24 mAb was also unable to induce this phenomenon. Notably, a striking cell redistribution of ICAM-3 was induced specifically by the HP2/19 mAb, but not by the other anti-ICAM-3 mAb or the other adhesion promoting agents. Thus, ICAM-3 was almost exclusively concentrated in the most distal portion of the heading uropod whereas either LFA-1 or the VLA beta 1 integrin were uniformly distributed all over the large contact area. Moreover, this phenomenon was also observed when T cells were specifically stimulated with the HP2/19 mAb to interact with TNF alpha-activated endothelial cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The present study provides direct evidence that syndecan 2 participates selectively in the induction of stress fiber formation in cooperation with integrin α5β1 through specific binding of its heparan sulfate side chains to the fibronectin substrate. Our previous study with Lewis lung carcinoma-derived P29 cells demonstrated that the cell surface heparan sulfate proteoglycan, which binds to fibronectin, is syndecan 2 (N. Itano et al., 1996, Biochem. J. 315, 925–930). We here report that in vitro treatment of the cells by antisense oligonucleotide for syndecan 2 resulted in a failure to form stress fibers on fibronectin substrate in association with specific suppression of its cell surface expression. Instead, localization of actin filaments in the cytoplasmic cortex occurred. A similar response of the cells was observed when the cells were treated to eliminate functions of cell surface heparan sulfates, including exogenous addition of heparin and pretreatment with anti-heparan sulfate antibody, F58-10E4, and with proteinase-free heparitinase I. Size- and structure-defined oligosaccharides prepared from heparin and chemically modified heparins were utilized as competitive inhibitors to examine the structural characteristics of the cell surface heparan sulfates involved in organization of the actin cytoskeleton. Their affinity chromatography on a column linked with a recombinant H-271 peptide containing a C-terminal heparin-binding domain of fibronectin demonstrated that 2-O-sulfated iduronates were essential for the binding. Inhibition studies revealed that a heparin-derived dodecasaccharide sample enriched with an IdoA(2OS)–GlcNS(6OS) disaccharide completely blocked binding of the syndecan 2 ectodomain to immobilized H-271 peptide. Finally, the dodecasaccharide sample was shown to inhibit stress fiber formation, triggered by adhesion of P29 cells to a CH-271 polypeptide consisting of both the RGD cell-binding and the C-terminal heparin-binding domains of fibronectin in a fused form. All these results consistently suggest that syndecan 2 proteoglycan interacts with the C-terminal heparin-binding domain of fibronectin at the highly sulfated cluster(s), such as [IdoA(2OS)–GlcNS(6OS)]6 present in its heparan sulfate chains, to result in the induction of stress fiber formation in cooperation with integrin α5β1.  相似文献   

11.

Background and Objective

Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model.

Methodology

HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR.

Results

After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase.

Conclusions

The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and may provide novel insight for HCC metastasis.  相似文献   

12.
The CD2 molecule is one of several lymphocyte receptors that rapidly initiates signaling events regulating integrin-mediated cell adhesion. CD2 stimulation of resting human T cells results within minutes in an increase in β1-integrin-mediated adhesion to fibronectin. We have utilized the HL60 cell line to map critical residues within the CD2 cytoplasmic domain involved in CD2 regulation of integrin function. A panel of CD2 cytoplasmic domain mutants was constructed and analyzed for their ability to upregulate integrin-mediated adhesion to fibronectin. Mutations in the CD2 cytoplasmic domain implicated in CD2-mediated interleukin-2 production or CD2 avidity do not affect CD2 regulation of integrin activity. A proline-rich sequence, K-G-P-P-L-P (amino acids 299 to 305), is essential for CD2-mediated regulation of β1 integrin activity. CD2-induced increases in β1 integrin activity could be blocked by two phosphoinositide 3-kinase (PI 3-K) inhibitors or by overexpression of a dominant negative form of the p85 subunit of PI 3-K. In addition, CD2 cytoplasmic domain mutations that abrogate CD2-induced increases in integrin-mediated adhesion also ablate CD2-induced increases in PI 3-K enzymatic activity. Surprisingly, CD2 cytoplasmic domain mutations that inhibit CD2 regulation of adhesion do not affect the constitutive association of the p85 subunit of PI 3-K association with CD2. Mutation of the proline residues in the K-G-P-P-L-P motif to alanines prevented CD2-mediated activation of integrin function and PI 3-K activity but not mitogen-activated protein (MAP) kinase activity. Furthermore, the MEK inhibitor PD 098059 blocked CD2-mediated activation of MAP kinase but had no effect on CD2-induced adhesion. These studies identify a proline-rich sequence in CD2 critical for PI 3-K-dependent regulation of β1 integrin adhesion by CD2. In addition, these studies suggest that CD2-mediated activation of MAP kinase is not involved in CD2 regulation of integrin adhesion.  相似文献   

13.
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.  相似文献   

14.
The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.  相似文献   

15.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is α7β1-integrin, which is structurally related to α6β1. It occurs in three cytoplasmic splice variants (α7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the α7β-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the α7-mediated cell motility, we expressed the three α7-chain cytoplasmic splice variants, as well as α6A- and α6B-integrin subunits in HEK293 cells. Here we show that all three α7 splice variants (containing the X2 domain), as well as α6A and α6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from α7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only α7-expressing cells showed enhanced motility, whereas cells transfected with α6A and α6B neither attached nor migrated on laminin-2. Adhesion of α7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for α7. Expression of the two extracellular splice variants α7X1 and α7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas α7X2B promoted cell migration on both laminin-1 and laminin-2, α7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of α6-integrin subunits after α7A or -B transfection; also, surface expression of α1-, α3-, and α5-integrins was significantly reduced. These results demonstrate selective responses of α6- and α7-integrins and of the α7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

16.
We recently reported that the human transferrin receptor (TfR) contains O-linked GalNAc residues [1]. To investigate whether this modification is shared by transferrin receptors in other mammals, we investigated the glycosylation of TfR in hamster cells. To facilitate our analysis the lectin-resistant Chinese hamster ovary (CHO) cell line Lec8 was used. These cells are unable to galactosylate glycoproteins, resulting in truncation of the Ser/Thr-linked oligosaccharides to a single residue of terminal alpha-linked GalNAc. This structure is bound with high affinity by the lectin Helix pomatia agglutinin (HPA). The TfR was affinity purified from Lec8 cells metabolically radiolabeled with [3H]glucosamine and the receptor was found to bind tightly to HPA-Sepharose. Treatment of the purified TfR with mild alkaline/borohydride released [3H]GalNAcitol, demonstrating the presence of O-linked GalNAc. We also found that many other unidentified [3H]glucosamine-labeled glycoproteins from Lec8 cells were bound by HPA-Sepharose. The bound and unbound glycoproteins were separated by SDS/PAGE and individual species were selected for treatment with mild base/borohydride. Treatment of glycoproteins bound by HPA, but not those unbound, resulted in the release of [3H]GalNAcitol. These studies demonstrate both that the hamster TfR contains O-linked oligosaccharides and that this approach may have general utility for identifying the presence of these oligosaccharides in other glycoproteins.  相似文献   

17.

Background

Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.

Principal Findings

We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.

Conclusions/Significance

PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular “governor” to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.  相似文献   

18.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

19.
P-selectin glypoprotein ligand-1, PSGL-1, a specific ligand for P-, E-, and L-selectin, was isolated from in vivo [3H]-glucosamine labeled HL-60 cells by a combination of wheat germ agglutinin and platelet P-selectin- or E-selectin receptor globulin-agarose chromatography. The O-linked oligosaccharides on the ligand were released by mild alkaline sodium borohydride treatment and analyzed by a combination of ion-exchange, size exclusion, lectin, and paper chromatography, together with specific exoglycosidase treatments and chemical modifications. Approximately 91% of the radioactivity released from PSGL-1 was recovered in five O-linked glycans: GalNAc (approximately 4% of the total structures), Gal, 3GalNAc (36%), and Gal, 3GalNAc substituted with one (45%), two (6 %), or three (3%) N-acetyllactosamine repeat units. None of these structures contained fucose, and the majority were substituted with at least one sialic acid. The N-acetyllactosmine-containing structures appeared to be core 2. The remaining 9% of the radioactivity recovered in O-linked oligosaccharides from PSGL-1, eluted in two peaks at 11.8 and 10.2 glucose units, on size-exclusion chromatography. Results from lectin chromatography and chemical and enzymatic degradation experiments suggest that the major portion of the radioactivity in these peaks is associated with sialylated N-acetyllactosamine-type oligosaccharides, substituted with fucose at the penultimate residue in the nonreducing end. Since both sialic acid and fucose reportedly are crucial requirements for selectin binding, these results suggest that only a minor portion, approximately 4.5%, of the O-linked oligosaccharides on PSGL-1 are involved in the interaction with the selectins.  相似文献   

20.
Vaccinia virus (VV) induces two forms of cell motility: cell migration, which is dependent on the expression of early genes, and the formation of cellular projections, which requires the expression of late genes. The need for viral gene expression prior to cell motility suggests that VV proteins may affect how infected cells interact with the extracellular matrix. To address this, we have analyzed changes in cell-matrix adhesion after infection of BS-C-1 cells with VV. Whereas uninfected cells round up and detach from the culture flask in the presence of EGTA, infected cells remain attached to the culture flask with a stellate morphology. Ca2+-independent cell-matrix adhesion was evident by 10 h postinfection, after the onset of cell motility but before the formation of virus-induced cellular projections. Progression to Ca2+-independent adhesion required the expression of late viral genes but not the formation of intracellular enveloped virus particles or intracellular actin tails. Analyses of specific matrix proteins identified vitronectin and fibronectin as optimal ligands for Ca2+-independent adhesion and the formation of cellular projections. Adhesion to fibronectin was mediated via RGD motifs alone and was not inhibited by 500 μg of heparin/ml. Kistrin, a disintegrin which binds preferentially to the αvβ3 (vitronectin/fibronectin) receptor inhibited the formation of cellular projections without disrupting preformed matrix interactions. Finally, we show that Ca2+-independent cell-matrix adhesion is a dynamic process which mediates changes in the morphology of VV-infected cells and uninfected cells which exhibit a transformed phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号