首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

2.
The activity of flavin-containing monooxygenases in microsomes and whole homogenates is readily estimated by following the thiourea-dependent oxidation of thiocholine. NADPH- and oxygen-dependent flavin-containing monooxygenases catalyze the oxidation of thiourea to formamidine sulfenic acid, which oxidizes thiocholine to thiocholine disulfide. The latter reaction is quite rapid and never rate limiting even at concentrations of thiocholine below 30 microM. The loss of thiocholine in deproteinized aliquots of the reaction medium is measured colorimetrically with the thiol reagent, DTNB [5,5'-dithiobis(2-nitrobenzoate)]. In the absence of thiourea, thiocholine is not oxidized and its disulfide is not reduced at a detectable rate even in reactions containing 4-5 mg of liver or kidney homogenate protein per milliliter. In all tissues where both can be measured, rates of thiocholine oxidation and N,N-dimethylaniline N-oxygenation were virtually identical, which suggests that both activities are catalyzed by the same monooxygenase.  相似文献   

3.
A rapid, convenient assay to determine the activity of the flavin-containing monooxygenase is described. The method is based on direct analysis of quenched incubation mixtures by thin-layer chromatography and utilizes tritiated dimethylaniline as the substrate. The synthesis of the radiolabeled substrate is described. The usefulness of dimethylaniline N-oxide formation as a measure of flavin-containing monooxygenase activity was assessed using the purified hog liver enzyme, hog liver microsomes, and liver microsomes from untreated and phenobarbital-pretreated rats.  相似文献   

4.
Catalytic activities and substrate specificity of flavin-containing monooxygenase were examined in human tissues. During incubation with imipramine, human hepatic microsomes efficiently carried out cytochrome P450-dependent reactions but not the formation of N-oxide, while in kidney imipramine N-oxide was the only metabolite formed during in vitro incubation. The production of imipramine N-oxide was essentially due to flavin-containing monooxygenase as shown by thermal inactivation. In contrast, thiobenzamide and dimethylaniline were actively transformed by both human liver and kidney flavin-containing monooxygenase. Neither the modification of pH nor the solubilization of microsomal membranes increased imipramine N-oxidation in human liver. Kinetic analysis indicated a poor affinity (about 7 mM) of human liver microsomes for imipramine versus 0.3 mM in kidney. Immunological studies were undertaken to support enzymatic data. Antibodies raised against rat liver flavin-monooxygenase reacted strongly with human kidney microsomes but extremely weakly with liver microsomes. The relative amount of immunochemically determined protein correlated well with imipramine N-oxidation activity. A dose-dependent inhibition of imipramine N-oxidation by anti-flavin-monooxygenase antibodies was observed in human kidney, as well as in rat kidney and liver. Taken together, the results can be interpreted by the possible existence in human tissues of distinct flavin-containing monooxygenases exhibiting a partial overlapping substrate specificity. The protein involved in imipramine N-oxidation is missing from human liver but actively carries out the reaction in kidney, while another protein catalyzes the oxidation of thiobenzamide and dimethylaniline in both tissues.  相似文献   

5.
The flavin-containing monooxygenase has been purified from mouse and rabbit lung microsomes and shown to be distinct from the flavin-containing monooxygenase found in the liver of the same species. The mouse and rabbit lung monooxygenases have a unique ability to N-oxidize the primary aliphatic amine, n-octylamine, commonly included in microsomal incubations to inhibit cytochrome P-450. In the mouse lung, this compound not only serves as a substrate but is also a positive effector of metabolism. The mouse and rabbit lung enzymes have unusual pH optimum, near 9.8, compared to the liver enzymes which have peaks near pH 8.8. Using antibodies raised in goats, Ouchterlony immunodiffusion analysis indicates that the liver and lung proteins are immunochemically dissimilar.  相似文献   

6.
We previously reported the occurrence of multiple forms of drug metabolizing enzymes in camel tissues. In this study, we demonstrated for the first time, flavin-containing monooxygenase (FMO)-dependent metabolism of two model substrates methimazole (MEM) and N,N'-dimethylaniline (DMA) by camel liver, kidney, brain and intestine. FMO-catalyzed metabolism in the microsomes of camel tissues was independent of cytochrome P450 (CYP) activity and exhibited a pH and temperature dependence characteristic of FMO enzymes. Use of inhibitors of CYP activities, SKF525A, octylamine or antibody against NADPH-P450 reductase, did not significantly alter the FMO-dependent substrate metabolism. Using MEM as a model substrate for FMO activity, we show that camel liver has an activity similar to that in rat and human livers. MEM metabolism in extrahepatic tissues in camels was significantly lower (60%-80%) than that in liver. Our results suggest occurrence of FMO in camel tissues, with catalytic properties similar to those in rat and human livers. These results may help in better understanding the effects of pharmacologically and toxicologically active compounds administered to camels.  相似文献   

7.
The determination of the mixed function flavin-containing monooxygenase activity in rat liver and in hepatocytes and their cultures by spectrophotometric measurement of the oxygenation of methimazole is complicated by an inhibition caused by some of the reagents used during this method. Optimal conditions were determined for measuring this enzyme activity in microsomal preparations of rat liver and its hepatocytes. Optimal flavin-containing monooxygenase activities were obtained for measurements performed in a 0.25 M N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine-EDTA buffer at pH 8.7 and at a methimazole concentration of 2 mM. Data are also presented which show that no interferences caused by either cytochrome P450-dependent enzymes or by the reduction of methimazole disulfide by glutathione have to be taken into account when determining methimazole oxygenation. Finally, the above assay was also used to study flavin-containing monooxygenase activity in primary monolayer cultures of hepatocytes for 6 days.  相似文献   

8.
1. Oyster visceral mass and gill tissues possessed measurable flavin-containing monooxygenase (FMO) activity. 2. FMO activity was confirmed in visceral mass microsomes by oxygen uptake experiments utilizing various nitrogen and sulfur-containing chemicals along with measurement of N,N-dimethylaniline (DMA) N-oxidase and methimazole oxidation activities. DMA N-oxidase and methimazole oxidation activities also were present in gill microsomes. 3. Excluding oyster gill methimazole oxidation, there were no consistent seasonal differences in FMO activity in oyster gill or visceral mass microsomes. 4. Although lacking spectral evidence for cytochrome P-450, a peak at 418 nm was observed along with NADPH-cytochrome c reductase activity in visceral mass and gill microsomes suggesting the presence of a denatured cytochrome P-450 system. 5. NADPH-independent benzo(a)pyrene hydroxylase (BPH) activity was observed in both oyster visceral mass and gill microsomes suggesting a co-oxidation pathway possibly involving a one electron transfer of oxygen from a lipid hydroperoxide.  相似文献   

9.
Microsomal fractions isolated from rat corpus striatum catalyze the oxidation of thiobenzamide to the sulfoxide. The rate of thiobenzamide sulfoxidation is 6.9 +/- 4.8 nmol(min)-1 (mg microsomal protein)-1. The reaction is inhibited by an excess of sulfur- and nitrogen-containing substrates for the microsomal flavin-containing monooxygenase. These inhibitors of thiobenzamide sulfoxidation include methimazole, cysteamine, and trimethylamine. Enzyme activity is also destroyed by treatment of the microsomal preparation at 60 degrees for 1 min. In parallel experiments, rat liver microsomes exhibit similar inhibition characteristics. The data indicate the presence in corpus striatum of a microsomal monooxygenase with catalytic properties of the hepatic microsomal flavin-containing monooxygenase.  相似文献   

10.
Comparisons of the specific activity of cytoplasmic superoxide dismutase, in homogenates of liver, brain and heart demonstrate considerably reduced activity in livers of aging rats and mice, a very small reduction in specific activity in the heart and no reduction in the brain of aging animals.Antisera elicited in rabbits against purified superoxide dismutase from liver of either young or old rats revealed complete cross-reactivity with the heart and brain enzymes. They also exhibited complete cross-reactivity with the mouse enzymes from all three organs. This finding has, for the first time, enabled a comparison of possible age-dependent alterations in the same enzyme antigen in different cell types.Despite the differences in age-related changes in specific activity in homogenates of liver, heart and brain the enzyme shows a considerable decline in catalytic activity per antigenic unit in all three organs in both aging rats and mice.  相似文献   

11.
The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzo[a]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.  相似文献   

12.
Two distinct forms (FMO-I and FMO-II) of flavin-containing monooxygenase were purified from the liver microsomes of guinea pig. The minimum molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 54,000 for FMO-I and 56,000 for FMO-II, respectively. Tryptic digestion of these enzymes gave different electrophoretic patterns, suggesting that FMO-I and -II have distinct amino acid sequences. The amino terminal sequence of FMO-II could not be estimated probably due to its blocking while that of FMO-I was determined to be highly homologous to the rabbit liver flavin-containing monooxygenase (J. Ozols, 1989, Biochem. Biophys. Res. Commun. 163, 49-55). Absorption maxima of FMO-I and -II were recorded at 368 and 440 nm and 381 and 456 nm, respectively. Molar ratios of FAD to both of these apoenzymes were shown to be one to one. Substrate specificity of FMO-I and -II was determined using 15 compounds as the substrate. The results showed two enzymes that exhibited overlapped but different specificity toward these substrates although FMO-I had lower activity than did FMO-II with all compounds except thiobenzamide. Of particular interest, only FMO-II showed considerably high activities for primary amines, n-octylamine, and n-decylamine. Immunoglobulin G raised against FMO-II could recognize FMO-I as well as FMO-II, but the reactivity of FMO-I toward the antibody was obviously lower than that of FMO-II. Electrophoresis followed by immunostaining revealed that microsomes of lung, kidney, urinary bladder, testis, and spleen contain the same protein as FMO-II and/or FMO-I. Only lung was shown to have an additional isozyme of FAD-monooxygenase with a molecular weight apparently higher than those of FMO-I and -II. These results strongly suggest that at least two forms of flavin-containing monooxygenases distinct from the lung-type isozyme are expressed in liver of guinea pigs.  相似文献   

13.
The presence of cytochrome P-450 and associated mono-oxygenase activities was examined in brain microsomes from male and female mice. Although the cytochrome P-450 level in male mouse brain was very low as compared with mouse liver, the aminopyrine N-demethylase and morphine N-demethylase specific activities in male mouse brain were much higher than those observed in mouse liver. Ethoxycoumarin O-de-ethylase and aniline hydroxylase activities were, however, not detected in mouse brain. Sex-related differences were observed in both the cytochrome P-450 levels and aminopyrine N-demethylase activity in mouse brain, the levels of both being higher in male mouse brain as compared with female mouse brain. Aminopyrine N-demethylase activity in mouse brain microsomes was dependent on the presence of oxygen and NADPH and could be inhibited by piperonyl butoxide, N-octyl imidazole and carbon monoxide. Antiserum raised to the phenobarbital-inducible form of rat liver cytochrome P-450 [P-450(b+e)] inhibited mouse brain aminopyrine N-demethylase activity by around 80+ mouse brain microsomal protein exhibited cross-reactivity against this antiserum when examined by Ouchterlony double diffusion and immunoblotting. The present results indicate the presence of a phenobarbital-inducible form of cytochrome P-450 (or a form of cytochrome P-450 that is similar immunologically) in mouse brain microsomes, which is associated with a sex-related difference.  相似文献   

14.
Benzydamine (BZY) N-oxidation mediated by flavin-containing monooxygenase (FMO) was evaluated in perfused brain and liver. Following 20 min of perfusion with modified Ringer solution, the infusion of BZY into brain or liver led to production of BZY N-oxide. BZY N-oxide, a metabolite of BZY oxidized exclusively by FMO, was mostly recovered in the effluent without undergoing further metabolism or reduction back to the parent substrate. The BZY N-oxide formation rate increased as the infusion concentration of BZY increased both in perfused brain and perfused liver. BZY N-oxidation activities in perfused rat brain and liver were 4.2 nmol/g brain/min and 50 nmol/g liver/min, respectively, although the BZY N-oxidation activity in brain homogenates was one 4000th that in liver homogenates. This is the first study of FMO activity in brain in situ.  相似文献   

15.
The flavin-containing monooxygenase (FMO) was purified from mouse lung microsomes. On SDS-PAGE, the purified enzyme separated as two bands, a major band of 58,000 daltons and a minor band of 59,000 daltons. Antibodies to mouse liver FMO cross-reacted with both bands in the purified preparations, whereas antibodies to rabbit lung FMO cross-reacted only with the major band. In microsomal preparations the major band was recognized by both antibodies, but neither antibody detected the minor band in microsomes. A cDNA encoding the pig liver FMO hybridized with mRNA isolated from mouse liver, kidney, and lung, whereas cDNA encoding the rabbit lung FMO hybridized only with mouse lung and kidney mRNA. Thermal stability studies showed that the FMO preparation purified from mouse lung consisted of a heat-stable and a heat-labile component. The heat-labile component of lung FMO was inhibited competitively by imipramine, whereas the heat-stable component was insensitive to the presence of imipramine. Immunoprecipitation of purified mouse lung FMO with anti-rabbit lung FMO completely removed the protein band reactive to anti-rabbit lung FMO while leaving reactivity to anti-liver FMO. The catalytic and immunochemical differences seen between FMO from rabbit lung and mouse lung appear to result from the expression of at least two forms of FMO in the mouse lung, one similar to the rabbit pulmonary form and one similar to the major mouse liver form of FMO.  相似文献   

16.
Content of cytochromes b5 and P-450, and activities of NADPH-cytochrome c (P-450) reductase (NCR) and 7-ethoxyresorufin O-deethylase (EROD) were measured in liver microsomes prepared from two South American endemic fish, Brycon cephalus and Colossoma macropomum, from tilapia, Oreochromis niloticus, and from Swiss mice, Mus musculus, which served as a control. Strong hemoglobin binding to fish liver microsomal membranes (FLM) altered visible spectra of microsomal cytochromes. Consequently, special precautions during FLM preparation, including liver perfusion followed by repeated washing of microsomes, were required in the study of microsomal cytochromes from these fish. FLM from all fish studied here had a significantly lower content of microsomal cytochromes but a similar level of NCR and EROD activities compared to mouse liver microsomes (MLM). Strong response of the monooxygenase system in O. niloticus to water pollution was detected with both specific cytochrome P-450 content and EROD activity increasing sharply. The optical spectra of hemoglobin from B. cephalus and C. macropomum were analyzed and some differences in shape and relative extinction were observed compared to known hemoglobins.  相似文献   

17.
The first steps in the biosynthesis of glucosinolates and indole-3-acetic acid (IAA) in oilseed rape (Brassica napus L.) and Chinese cabbage (Brassica campestris ssp. pekinensis) involve the formation of aldoximes. In rape the formation of aldoximes from chain-extended amino acids, for aromatic and aliphatic glucosinolate biosynthesis, is catalysed by microsomal flavin-containing monooxygenases. The formation of indole-3-aldoxime from l-tryptophan, the potential precursor of both indole-3-acetic acid and indolyl-glucosinolates, is catalysed by several microsomal peroxidases. The biosynthesis of glucosinolates and indole-3-acetic acid was shown to be under developmental control in oilseed rape and Chinese cabbage. No monooxygenase activities were detected in cotyledons or old leaves of either species. The highest monooxygenase activities were found in young expanding leaves; as the leaves reached full expansion and matured the activities decreased rapidly. The indole-aldoxime-forming activity was found in all of the tissues analysed, but there was also a clear decrease in foliar activity with maturity in leaves of rape and Chinese cabbage. Partial characterisation of the Chinese cabbage monooxygenases showed that they have essentially identical properties to the previously characterised rape enzymes; they are not cytochrome P450-type enzymes, but resemble flavin-containing monooxygenases. No monooxygenase inhibitors were detected in microsomes prepared from either cotyledons or old leaves.Abbreviations DHMet dihomomethionine - FMO flavin-containing monooxygenase - HPhe homophenylalanine - IAA indole-3-acetic acid - l-Phe l-phenylalanine - l-Trp l-tryptophan - MO monooxygenase - IAALD indole-3-acetaldehyde - IAOX indole-3-aldoxime - THMet trihomomethionine  相似文献   

18.
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.  相似文献   

19.
Nifedipine oxidase and diazepam C3-hydroxylase were tested as activities for selectively measuring CYP3A enzymes using liver microsomes from male and female human organ donors, male and female Wistar rats and male and female estuarine crocodiles. The association between CYP3A enzymes and these monooxygenations was confirmed for the human samples. Male rat samples had lower specific contents of CYP3A apoprotein than the human samples but had equivalent (nifedipine) or higher (diazepam) monooxygenase specific activities. CYP3A apoprotein was undetectable in female rat samples which had very low activities towards both substrates. Enzyme inhibition studies showed that diazepam C3-hydroxylase of male rat liver was attributable to CYP3A but corresponding results for female rats suggested a contribution from non-CYP3A enzyme. Western blotting with immunochemical detection using anti-CYP3A4 IgG suggested the presence of putative CYP3A apoprotein in male and female crocodile liver samples and inhibition studies with diazepam as substrate suggested the presence of CYP3A subfamily monooxygenase activity in these enzyme preparations. Results for nifedipine oxidase with male and female rat liver and male crocodile liver suggested major contributions to catalysis from non-CYP3A enzymes. Inhibition studies suggested that a higher proportion of nifedipine oxidase in female crocodile liver may be attributable to the putative CYP3A enzyme(s) than in male crocodile liver. These results show the need for care in the assessment of CYP3A activity of fractionated tissues when using these substrates in cross-species studies and where gender is a variable.  相似文献   

20.
A rapid, convenient assay for flavin-containing monooxygenase activity is described. The method is based on direct analysis of quenched incubation mixtures by reverse-phase liquid chromatography, and utilizes p-nitrophenyl-1,3-oxathiolane as the substrate. The synthesis of the substrate and the product are described. The usefulness of p-nitrophenyl-1,3-oxathiolane S-oxide formation as a measure of flavin-containing monooxygenase activity was demonstrated using highly purified and microsomal hog and rat liver flavin-containing monooxygenase. The assay is especially useful for determining stereoselectivity of flavin-containing monooxygenase activity in small amounts of crude tissue preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号