首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leber congenital amaurosis (LCA) is one of the main causes of childhood blindness. To date, mutations in eight genes have been described, which together account for approximately 45% of LCA cases. We localized the genetic defect in a consanguineous LCA-affected family from Quebec and identified a splice defect in a gene encoding a centrosomal protein (CEP290). The defect is caused by an intronic mutation (c.2991+1655A-->G) that creates a strong splice-donor site and inserts a cryptic exon in the CEP290 messenger RNA. This mutation was detected in 16 (21%) of 76 unrelated patients with LCA, either homozygously or in combination with a second deleterious mutation on the other allele. CEP290 mutations therefore represent one of the most frequent causes of LCA identified so far.  相似文献   

2.
3.
Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case–control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.  相似文献   

4.
Mutations in human CEP290 cause cilia-related disorders that range in severity from isolated blindness to perinatal lethality. Here, we describe a Chlamydomonas reinhardtii mutant in which most of the CEP290 gene is deleted. Immunoelectron microscopy indicated that CEP290 is located in the flagellar transition zone in close association with the prominent microtubule–membrane links there. Ultrastructural analysis revealed defects in these microtubule–membrane connectors, resulting in loss of attachment of the flagellar membrane to the transition zone microtubules. Biochemical analysis of isolated flagella revealed that the mutant flagella have abnormal protein content, including abnormal levels of intraflagellar transport proteins and proteins associated with ciliopathies. Experiments with dikaryons showed that CEP290 at the transition zone is dynamic and undergoes rapid turnover. The results indicate that CEP290 is required to form microtubule–membrane linkers that tether the flagellar membrane to the transition zone microtubules, and is essential for controlling flagellar protein composition.  相似文献   

5.
Joubert syndrome and related diseases (JSRD) are developmental cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy and nephronophthisis (a cystic kidney disease). We have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR), to perform in-situ hybridisation studies on embryonic tissues, revealing an early onset neuronal, retinal and renal expression pattern for AHI1. An almost identical pattern of expression is seen with CEP290 in human embryonic and fetal tissue. A novel finding is that both AHI1 and CEP290 demonstrate strong expression within the developing choroid plexus, a ciliated structure important for central nervous system development. To test if AHI1 and CEP290 may have co-evolved, we carried out a genomic survey of a large group of organisms across eukaryotic evolution. We found that, in animals, ahi1 and cep290 are almost always found together; however in other organisms either one may be found independent of the other. Finally, we tested in murine epithelial cells if Ahi1 was required for recruitment of Cep290 to the centrosome. We found no obvious differences in Cep290 localisation in the presence or absence of Ahi1, suggesting that, while Ahi1 and Cep290 may function together in the whole organism, they are not interdependent for localisation within a single cell. Taken together these data support a role for AHI1 and CEP290 in multiple organs throughout development and we suggest that this accounts for the wide phenotypic spectrum of AHI1 and CEP290 mutations in man.  相似文献   

6.
Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies.  相似文献   

7.
Mutations in RPGR account for over 70% of X-linked retinitis pigmentosa (XlRP), characterized by retinal degeneration and eventual blindness. The clinical consequences of RPGR mutations are highly varied, even among individuals with the same mutation: males demonstrate a wide range of clinical severity, and female carriers may or may not be affected. This study describes the phenotypic diversity in a cohort of 98 affected males from 56 families with RPGR mutations, and demonstrates the contribution of genetic factors (i.e., allelic heterogeneity and genetic modifiers) to this diversity. Patients were categorized as grade 1 (mild), 2 (moderate) or 3 (severe) according to specific clinical criteria. Patient DNAs were genotyped for coding SNPs in 4 candidate modifier genes with products known to interact with RPGR protein: RPGRIP1, RPGRIP1L, CEP290, and IQCB1. Family-based association testing was performed using PLINK. A wide range of clinical severity was observed both between and within families. Patients with mutations in exons 1–14 were more severely affected than those with ORF15 mutations, and patients with predicted null alleles were more severely affected than those predicted to make RPGR protein. Two SNPs showed association with severe disease: the minor allele (N) of I393N in IQCB1 (p = 0.044) and the common allele (R) of R744Q in RPGRIP1L (p = 0.049). These data demonstrate that allelic heterogeneity contributes to phenotypic diversity in XlRP and suggest that this may depend on the presence or absence of RPGR protein. In addition, common variants in 2 proteins known to interact with RPGR are associated with severe disease in this cohort.  相似文献   

8.
A subset of genetic mutations in photoreceptor-specific genes results in abnormally prolonged activation of transducin-mediated photosignaling in rod cells. In humans and animal models, these mutations cause visual dysfunctions ranging from a mild stationary night blindness to severe, early-onset retinal degeneration. There are mechanistic differences between mutations causing night blindness and those causing retinal degeneration. Here, we hypothesize that mutations causing continuous activation of the visual cascade as the result, for example, of the inability of the photoreceptor to regenerate rhodopsin, lead to retinal degeneration; those mutations that can terminate signaling, even if only partially and intermittently, slow the rate of degeneration sufficiently to give rise to stationary night blindness. Furthermore, we hypothesize that a prolonged decrease in intracellular calcium concentration resulting from persistent activation is responsible for triggering apoptotic rod-cell death.  相似文献   

9.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 50 genes. Using homozygosity mapping in Ashkenazi Jewish (AJ) patients with autosomal-recessive RP (arRP), we identified a shared 1.7 Mb homozygous region on chromosome 1p36.11. Sequence analysis revealed a founder homozygous missense mutation, c.124A>G (p.Lys42Glu), in the dehydrodolichyl diphosphate synthase gene (DHDDS) in 20 AJ patients with RP of 15 unrelated families. The mutation was not identified in an additional set of 109 AJ patients with RP, in 20 AJ patients with other inherited retinal diseases, or in 70 patients with retinal degeneration of other ethnic origins. The mutation was found heterozygously in 1 out of 322 ethnically matched normal control individuals. RT-PCR analysis in 21 human tissues revealed ubiquitous expression of DHDDS. Immunohistochemical analysis of the human retina with anti-DHDDS antibodies revealed intense labeling of the cone and rod photoreceptor inner segments. Clinical manifestations of patients who are homozygous for the c.124A>G mutation were within the spectrum associated with arRP. Most patients had symptoms of night and peripheral vision loss, nondetectable electroretinographic responses, constriction of visual fields, and funduscopic hallmarks of retinal degeneration. DHDDS is a key enzyme in the pathway of dolichol, which plays an important role in N-glycosylation of many glycoproteins, including rhodopsin. Our results support a pivotal role of DHDDS in retinal function and may allow for new therapeutic interventions for RP.  相似文献   

10.
Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.  相似文献   

11.
Retinal degeneration, either acquired or inherited, is a major cause of visual impairment and blindness in humans. Inherited retinal degeneration comprises a large group of diseases that result in the loss of photoreceptor cells. To date, 131 retinal disease loci have been identified, and 76 of the genes at these loci have been isolated (RetNet Web site). Several of these genes were first considered candidates because of their chromosomal localization or homology to genes involved in retinal degeneration in other organisms. In this review, I will discuss recent advances in the identification of genes that cause retinal degeneration, and I will describe the mechanisms of photoreceptor death and potential treatments for retinal degenerative diseases.  相似文献   

12.
Cilia play critical roles during embryonic development and adult homeostasis. Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the “gates” of cilia. The evolutionarily conserved TZ component centrosomal protein 290 (CEP290) is the most frequently mutated human ciliopathy gene, but its roles in ciliogenesis are not completely understood. Here, we report that CEP290 plays an essential role in the initiation of TZ assembly in Drosophila. Mechanistically, the N-terminus of CEP290 directly recruits DAZ interacting zinc finger protein 1 (DZIP1), which then recruits Chibby (CBY) and Rab8 to promote early ciliary membrane formation. Complete deletion of CEP290 blocks ciliogenesis at the initiation stage of TZ assembly, which can be mimicked by DZIP1 deletion mutants. Remarkably, expression of the N-terminus of CEP290 alone restores the TZ localization of DZIP1 and subsequently ameliorates the defects in TZ assembly initiation in cep290 mutants. Our results link CEP290 to DZIP1-CBY/Rab8 module and uncover a previously uncharacterized important function of CEP290 in the coordination of early ciliary membrane formation and TZ assembly.

Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the “gates” of cilia. A study in Drosophila reveals that the cilia TZ core protein CEP290 coordinates early ciliary membrane formation and TZ assembly; the N-terminus of CEP290 recruits DZIP1, which in turn recruits Rab8 and CBY to promote early ciliary membrane formation.  相似文献   

13.
Age-related macular degeneration (AMD) is a slow, progressive disease with both genetic and environmental risk factors. Free radical-induced oxidation of docosahexaenoate (DHA)-containing lipids generates omega-(2-carboxyethyl)pyrrole (CEP) protein adducts that are more abundant in ocular tissues from AMD than normal human donors. To understand better the role of oxidative damage in AMD, we have synthesized CEP-modified proteins, produced anti-CEP antibodies, and initiated analysis of CEP immunoreactivity and autoantibodies in human plasma. A highly selective rabbit polyclonal anti-CEP antibody was raised that binds CEP 1000 times more strongly than carboxypropylpyrrole, a close structural analogue. The CEP adduct uniquely indicates oxidative modification from DHA derivatives because CEP protein modifications cannot arise from any other common polyunsaturated fatty acid. Immunocytochemistry localized CEP to photoreceptor rod outer segments and retinal pigment epithelium in mouse retina and demonstrated more intense CEP immunoreactivity in photoreceptors from a human AMD donor compared with healthy human retina. The mean level of anti-CEP immunoreactivity in AMD human plasma (n = 19 donors) was 1.5-fold higher (p = 0.004) than in age-matched controls (n = 19 donors). Sera from AMD patients demonstrated mean titers of anti-CEP autoantibody 2.3-fold higher than controls (p = 0.02). Of individuals (n = 13) exhibiting both antigen and autoantibody levels above the mean for non-AMD controls, 92% had AMD. These results suggest that together CEP immunoreactivity and autoantibody titer may have diagnostic utility in predicting AMD susceptibility.  相似文献   

14.
The gene encoding the beta-subunit of rod photoreceptor cGMP phosphodiesterase (gene symbol PDEB, homolog of the mouse rd gene) is mapped to human chromosome 4 using somatic cell hybrids and further localized to the chromosome band 4p16 using in situ hybridization. A mutation in the mouse gene underlies the recessive trait of retinal degeneration in the rd mouse. Thus, the human homolog is a candidate for lesions causing retinal degeneration.  相似文献   

15.
Levels of interphotoreceptor retinoid-binding protein (IRBP) protein and message in retinas of Abyssinian cats homozygous for progressive rod-cone degeneration were determined at early ages, well before the onset of clinical retinal degeneration. IRBP gene expression was assessed by immunochemical quantitation of IRBP protein, and by Northern blotting and slot-blotting of total RNA using a human IRBP cDNA probe. Morphology was assessed by electron microscopy and immunocytochemistry. Levels of both IRBP protein and message in affected Abyssinian cat retinas were significantly reduced below normal as early as 4 weeks of age at the earliest stage of retinal disorientation. Opsin mRNA was more abundant in affected Abyssininian cat retinas than in control retinas. This was at least 1 year before the onset of clinical symptoms. The reduction in IRBP gene expression to levels significantly below normal well before the onset of retinal degeneration in affected Abyssinian cat retinas indicates that this represents a primary defect or at least an early problem that could itself cause adverse effects.  相似文献   

16.
We mapped a new X-linked recessive atrophic macular degeneration locus to Xp21.1-p11.4 and show allelic involvement of the gene RPGR, which normally causes severe peripheral retinal degeneration leading to global blindness. Ten affected males whom we examined had primarily macular atrophy causing progressive loss of visual acuity with minimal peripheral visual impairment. One additional male showed extensive macular degeneration plus peripheral loss of retinal pigment epithelium and choriocapillaries. Full-field electroretinograms (ERGs) showed normal cone and rod responses in some affected males despite advanced macular degeneration, emphasizing the dissociation of atrophic macular degeneration from generalized cone degenerations, including X-linked cone dystrophy (COD1). The RPGR gene nonsense mutation G-->T at open reading frame (ORF)15+1164 cosegregated with the disease and may create a donor splice site. Identification of an RPGR mutation in atrophic maculardegeneration expands the phenotypic range associated with this gene and provides a new tool for the dissection of the relationship between clinically different retinal pathologies.  相似文献   

17.
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.  相似文献   

18.
19.
Lee SJ  Montell C 《Current biology : CB》2004,14(23):2076-2085
BACKGROUND: Continuous exposure to light, even at relatively low intensities, leads to retinal damage and blindness in wild-type animals. However, the molecular mechanisms underlying constant-light-induced blindness are poorly understood. It has been presumed that the visual impairment resulting from long-term, continuous exposure to ambient light is a secondary consequence of the effects of light on retinal morphology, but this has not been addressed. RESULTS: To characterize the mechanism underlying light-induced blindness, we applied a molecular genetic approach using the fruit fly, Drosophila melanogaster. We found that the temporal loss of the photoresponse was paralleled by a gradual decline in the concentration of rhodopsin. The decline in rhodopsin and the visual response were suppressed by a C-terminal truncation of rhodopsin, by mutations in arrestin, and by elimination of a lysosomal protein, Sunglasses. Conversely, the visual impairment was greatly enhanced by mutation of the rhodopsin phosphatase, rdgC. Surprisingly, the mutations that suppressed light-induced blindness did not reduce the severity of the retinal degeneration resulting from constant light. Moreover, mutations known to suppress retinal degeneration did not ameliorate the light-induced blindness. CONCLUSIONS: These data demonstrate that the constant light-induced blindness and retinal degeneration result from defects in distinct molecular pathways. Our results support a model in which visual impairment caused by continuous illumination occurs through an arrestin-dependent pathway that promotes degradation of rhodopsin.  相似文献   

20.
Progressive retinal atrophies (PRA) are a heterogeneous group of inherited eye diseases common to both dogs and man. Over 100 individual canine breeds display some sort of retinal degeneration, making the dog an extremely valuable resource both for finding the genetic determinants of inherited blindness and for developing naturally occurring animal models that mimic human disease. Progressive retinal atrophies within the English mastiff displayed an ambiguous mode of inheritance. By conducting outcross matings between affected English mastiffs and normal animals from other breeds, the mode of inheritance was confirmed as dominant. This directed candidate gene analysis and led to identification of two synonymous mutations and one nonsynonymous mutation within the canine rhodopsin gene. The nonsynonymous mutation (T4R) is the cause of PRA in the English mastiff, and a test was developed to investigate its presence in 17 additional breeds. Testing of PRA-affected animals from 16 breeds revealed that none carry the T4R mutation, indicating a different cause of PRA. Analysis of two affected bull mastiffs revealed one heterozygote (+/T4R) and one homozygous normal individual (+/+). These findings suggest that the genetic origin of PRA is often breed specific and underline the value of outcross mating to circumvent problems that act to mask the mode of inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号