首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periphyton growth limitation experiments were conducted in five glacier streams during the main ice melt period in late summer using nutrient diffusing substrata (NDS) that contained nitrate and/or phosphate. Periphyton net growth was determined as chlorophyll a accrual after an exposure time of 4 weeks. In addition, primary water chemistry and physical parameters of the study streams were measured. These chemical and physical parameters characterised the sites as kryal (glacial) systems. Neither nutrient limitation nor a significant correlation between water chemistry and physical data and chlorophyll a values were apparent. A comparison between current velocity and ln‐transformed chlorophyll a values revealed a typical optimum curve with highest periphyton accrual at 0.5 m s–1 on NDS. During the summer ablation period, the net growth of periphyton in these glacial streams appeared to be controlled primarily by current velocity.  相似文献   

2.
Larned  Scott T.  Santos  Scott R. 《Hydrobiologia》2000,432(1-3):101-111
To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.  相似文献   

3.
Controls on periphyton biomass in heterotrophic streams   总被引:1,自引:0,他引:1  
1. Headwater streams of the Hubbard Brook Experimental Forest (HBEF) are typically characterised by a periphyton assemblage of low biomass and diversity. However, periphyton blooms have been observed following catchment deforestation experiments and occasionally during the annual spring thaw before canopy leaf‐out. 2. There is pronounced seasonal variation in both nutrient and light availability in HBEF streams. Stream water nitrogen (N) concentrations and light levels are higher before canopy leaf‐out and after leaf senescence and are lower during the growing season. Periphyton accrual rates also change seasonally; they are highest in spring prior to leaf‐out and significantly lower during summer and in autumn. 3. Periphyton biomass rarely responded positively to in‐situ experimental enrichment with nitrogen or phosphorus. In the summer, nutrient enrichment overall had no effect on periphyton biomass, while outside the growing season N enrichment had inhibitory effects on periphyton. 4. Despite these experimental results, surveys of ambient chlorophyll a concentrations in streams across the HBEF demonstrated no relationship between streamwater dissolved inorganic N or P concentrations and benthic chlorophyll a. 5. Our results suggest that HBEF periphyton communities are not closely regulated by nutrient availability, even during periods of high light availability. The inhibitory effects of nutrient enrichment outside the growing season are interesting, but further research is necessary to elucidate the mechanisms driving these responses.  相似文献   

4.
Buffalo Creek is in a forested watershed in eastern Pennsylvania and is relatively acid in upstream reaches (pH~6), becoming alkaline downstream (pH~8). Temperature, nitrogen (NO3-N) and phosphorus (O-PO4) increase significantly downstream whereas N/P declines. Nutrient-diffusing substrata were deployed in triplicate at an upstream and downstream site. Six treatments included two concentrations of nitrate, two concentrations of phosphate, nitrogen + phosphate, and a control. Substrata were collected after 18 days, scraped and analyzed for accrual of chlorophyll a and algal community structure. Chlorophyll a and algal biovolume were greatest downstream across all nutrient treatments. At the community level, accrual appeared to be limited by phosphorus at upstream sites. Downstream accrual also may have been phosphorus-limited, but the results were equivocal. Benthic algae on all treatments at both sites were ~96% diatoms. Minimal overlap in species composition was observed between upstream and downstream sites. Of the 75 species of diatoms encountered in the study, 58 species did not occur at the upstream site and 10 species did not occur at the downstream site. The upstream site was depauperate in species and dominated by Eunotia exigua (Bréb. ex Kütz.) Rabh., which showed a positive response to phosphorus and accounted for over 50% of the biomass across treatments. The downstream site showed a four-fold increase in species richness. Communities at this site contained some species that appeared to be phosphorus-limited, e.g. Melosira varians Ag., and others that seemed to be nitrogen-limited, e.g. Diatoma vulgare Bory and Navicula seminulum Grun. We conclude that extreme conditions upstream (low pH, high N/P) result in a species-poor community dominated by acidophilous phosphorus-limited diatoms. Increases in downstream nutrients and pH result in a relatively rich and diverse community.  相似文献   

5.
There have been few studies that have examined the spatial variance of nutrient limitation over the scale of an entire set of headwater streams. We used nutrient diffusing substrata experiments (control, nitrogen addition, phosphorus addition, and nitrogen+phosphorus addition) to examine how nutrient limitation varied throughout the five creeks that comprise the McLeod River headwaters (Alberta, Canada). We assessed the variance of chlorophyll a accrual at spatial scales within reach, within creek, among creeks and across linear distance within the entire watershed to assess the consistency and scale of nutrient limitation. We analyzed the importance of the spatial scale using several methods. We assessed the coefficient of variation at different scales, the spatial covariance of nitrogen and phosphorus deficiency indices using a spline correlogram, and the variance through traditional analyses of variance methods. Chlorophyll a accrual responded significantly to nutrients in all creeks, though the response varied in magnitude and in the limiting nutrient among reaches and among creeks. Variance in chlorophyll a accrual was due primarily to the factor of creek (R 2=0.40) and secondarily to reach (R 2=0.07). The CV was 31.4% among creeks, 18.4% among reaches, and 17.9% within reaches. The N deficiency index showed a positive correlation at sites located <4 km apart and a negative correlation at sites greater than 6.5 km apart. The P deficiency index showed no discernible spatial correlation. Our results suggest that nutrient limitation varies on small scales and is often driven by local processes.  相似文献   

6.
7.
1. Nutrient diffusing substrata (NDS) were used to determine the relative importance of nutrients and light as potential limiting factors of periphyton biomass and nitrogen (N) uptake in Mediterranean streams subjected to different human impacts. The nutrients examined were phosphorus (P) and N, and we also further differentiated between the response of periphyton communities to N species (i.e. NO3‐N and NH4‐N). To examine the effect of light and nutrients on periphyton biomass, chlorophyll a accrual rates on NDS located at open and closed canopy sites were compared. The effect of nutrient availability on periphyton uptake was measured by 15N changes on the NDS after NO315N short‐term nutrient additions. 2. Results show that light was the main factor affecting algal biomass in the study streams. Algal biomass was in general higher at open than at closed canopy sites. Nutrient availability, as simulated with the NDS experiments, did not enhance algal biomass accrual in either of the 2 light conditions. 3. In the control treatments (i.e. ambient concentrations), periphyton NO3‐N uptake rates increased and C : N molar ratios decreased consistently with increases in N availability across streams. NO3‐N uptake rates were altered when ambient N concentrations were increased artificially in the N amended NDS. Periphyton assemblages growing on N enriched substrata seemed to preferentially take up N diffusing from the substratum rather than N from the water column. This response differed among streams, and depended on ambient N availability. 4. Periphyton biomass was not significantly different between substrata exposed to the two forms of available N sources. Nonetheless, we found differences in the effects of both N sources on the uptake of N from the water column. NH4‐N seemed to be the preferred source of N for periphyton growing on NDS. 5. Results suggest that the effect of riparian zones on light availability, although seldom considered by water managers, may be more important than nutrients in controlling eutrophication effects derived from human activities. Finally, our results confirm that not only increases in concentration, but also stoichiometric imbalances should be considered when examining N retention in human altered streams.  相似文献   

8.
The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flows.  相似文献   

9.
1. Pacific salmon and steelhead once contributed large amounts of marine‐derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine‐derived nutrients have been reduced or eliminated. 2. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash‐free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. 3. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. 4. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient‐diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. 5. Salmon carcass analogues represent a pathogen‐free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide.  相似文献   

10.
Nuisance biomass levels of periphytic algae in streams   总被引:3,自引:3,他引:0  
Relative coverage of filamentous periphytic algae increased with chlorophyll a (chl a) biomass on natural substrata in 22 northwestern United States and Swedish streams. A biomass range of 100–150 mg chl a m−2 may represent a critical level for an aesthetic nuisance; below those levels, filamentous coverage was less than 20%. Other indices of water quality (dissolved oxygen content and measures of benthic macroinvertebrate diversity) were apparently unaffected by periphytic biomass or filamentous coverage in these streams. Neither was biomass related to limiting nutrient content (soluble reactive phosphorus, SRP), as has been observed in previous experiments using bare rocks in streams and slides in artificial channels. Ambient SRP concentration may not be a useful predicter of periphyton accrual on natural substrates, due to uptake and recycling of P throughout the stream and undetermined losses such as sloughing and grazing.  相似文献   

11.
1. Spring‐fed streams, with temperatures ranging from 7.1 to 21.6 °C, in an alpine geothermal area in SW Iceland were chosen to test hypotheses on the effects of nutrients and temperature on stream primary producers. Ammonium nitrate was dripped into the lower reaches of eight streams, with higher reaches being used as controls, during the summers of 2006 and 2007. Dry mass of larger primary producers, epilithic chlorophyll a and biovolumes of epilithic algae were measured. 2. Bryophyte communities were dominated by Fontinalis antipyretica, and biomass was greatest in the warmest streams. Jungermannia exsertifolia, a liverwort, was found in low densities in few samples from cold streams but this species was absent from the warmest streams. 3. Nutrient enrichment increased the biomass of bryophytes significantly in warm streams. No effects of the nutrient addition were detected on vascular plants. The biomass of larger filamentous algae (mainly Cladophora spp.) was significantly increased by nutrient enrichment in cold streams but reduced by nutrients in warm streams. Thalloid cyanobacteria (Nostoc spp.) were not affected by nutrients in cold streams but decreased with nutrient addition in warm streams. Epilithic algal chlorophyll a was increased by nutrients in all streams and to a greater extent in 2007 than in 2006. Nutrient addition did not affect the epilithic chlorophyll a differently in streams of different temperatures. 4. There were small differential effects of nutrients, influenced by pH and conductivity, on different epilithic algal groups. 5. As global temperatures increase, animal husbandry and perhaps crop agriculture are likely to increase in Iceland. Temperature will directly influence the stream communities, but its secondary effects, manifested through agricultural eutrophication, are likely to be much greater.  相似文献   

12.
Nitrate and phosphate solutions were released into two reaches of two central Idaho streams to determine within- and between-stream variability in uptake lengths, uptake rates, and mass transfer coefficients. Physical and biotic stream characteristics and periphyton nitrate-uptake rates in recirculating chambers were measured to determine their influence on nutrient dynamics. Phosphate uptake length did not differ among the four reaches. There were no within-stream differences in nitrate uptake lengths but they did differ between the two streams. Long nitrate uptake lengths likely were due to instream concentrations above saturation but also may have been influenced by differences in active surface area and algal abundance. Nitrate and phosphate uptake lengths were longer, and uptake rates higher, than most other published values. However, mass transfer coefficients were comparable to measurements in other streams. Mass transfer coefficients may be a better parameter for temporal and spatial comparisons of instream nutrient dynamics, and for determining the underlying causes of variability in uptake length. Received: 27 May 1998 / Accepted: 11 January 1999  相似文献   

13.
Nitrogen and phosphorus are the primary nutrients that affect water quality in streams in the midwestern USA and high concentrations of these nutrients tend to increase algal biomass. However, how nutrients interact with physical controls in regulating algal biomass is not well known in agricultural streams. Eighteen streams in east-central Illinois (USA) were sampled during June and September 2003 to analyze factors possibly regulating algal biomass. Additionally, two shaded and two non-shaded sites in the Embarras River in east-central Illinois were sampled intensively from June to December 2003. Both sestonic and periphytic chlorophyll-a (chl-a) were analyzed, and periphytic chl-a was assessed on natural substrata and unglazed ceramic tiles. Although high concentrations of nutrients were found in these streams (mean total P = 0.09–0.122 mg l−1 and mean NO3-N=4.4–8.4 mg l−1), concentrations of sestonic chl-a were low among all sites and both sampling periods (<18 mg m−3, median values of 5 and 3 in June and September, respectively). Filamentous algae were an important component of the algal communities in streams with stable substrata. Periphytic chl-a was generally not related to the concentration of N or P in the water column, and in non-shaded streams periphyton appeared at times to be light-limited due to turbid water. Turbidity was found to be an important factor controlling chl-a on ceramic tiles across the 18 sites and for the Embarras River sites; chl-a decreased exponentially in concentration (132–0 mg m−2) as turbidity increased from 4 to 39 NTU (r 2 = 0.80). In general, the interaction between hydrology and light (turbidity) likely controlled algal biomass in these nutrient-rich, agricultural streams.  相似文献   

14.
The effects of light and discharge on standing crops of periphyton in adjacent shaded and open reaches of first to fourth order streams were examined during winter in three streams of the Western Cascades, Oregon. Standing crops were measured in terms of chlorophylla and periphyton biomass at each site on 8 occasions. Open sites supported higher standing crops of periphyton than shaded sites and increases in standing crop were shown to be related to light input at each site. Biomass increased throughout winter until scouring associated with an unusually late winter freshet reduced periphyton standing crops to their lowest observed levels. It is concluded that periphyton levels are affected by a combination of factors of which light levels, and the periodicity of storm events are of major importance.  相似文献   

15.
The hypothesis that nitrate versus phosphate regulates the coastal primary production has been assessed at different time scales in the northwest Alboran Sea. Time series of temperature, salinity, nutrients and chlorophyll a obtained at three stations located off Málaga city (the greatest coastal urban core along the Alboran Sea shoreline) from 1992 to 2006 have been analysed. At the decadal scale, temperature increased linearly while salinity decreased. These changes were related to a shift in the wind regime suggesting that coastal upwelling became steadily weaker. In contrast to phosphate, nitrate was positively correlated with salinity at the seasonal scale and decreased linearly from 1992 to 2006. Seasonal and decadal changes in chlorophyll a were correlated with nitrate (and uncorrelated with phosphate). However, non-regular variability in chlorophyll a was correlated with phosphate. Consequently, the results demonstrate that nitrate controls the phytoplankton biomass at the inter-annual scale while both nitrate and phosphate do so at a shorter time scale. The Bay of Málaga receives elevated entries of domestic waste waters that release high loads of phosphate compared to nitrate. Our analysis indicates that the expected impact of this pollution on chlorophyll a at the inter-annual scale is reduced in comparison with the effects of atmospheric forcing.  相似文献   

16.
Since periphytic biofilm is an important source of food in lotic ecosystems, it is important to understand how key ecological factors affect the accrual and loss of algal biomass and sediment in the biofilm. We designed a field experiment to evaluate the effects of mesohabitat type (pools and riffles), grazing fish (control and exclusion), and substrate roughness (smooth and rough) on chlorophyll a, ash-free dry mass (AFDM), and total dry mass in a subtropical stream. Mesohabitat type did not influence the effect of grazers on periphyton. However, rough substrates accumulated more total dry mass in pools than in riffles, while smooth substrates accumulated similar amounts of total dry mass in both mesohabitats. The accrual of AFDM and chlorophyll a was greater on rough than on smooth substrates, regardless of mesohabitat. Treatments without fish accrued more total dry mass, AFDM, and chlorophyll a than treatments with fish, showing that fish play a major role in this stream by removing sediment and algal biomass. These results suggest that habitat simplification in the scale of substrate roughness and loss of large grazers may impact the accrual and loss of algal biomass and sediment in lotic ecosystems.  相似文献   

17.
The effects of artificial enrichment with nitrate, phosphate and EDTA on the phytoplankton community were studied in the Lobo Reservoir (São Paulo, Brazil). After 14 days of in situ incubation, the amounts of suspended matter and chlorophyll a, the numbers of cells and the carotene/chlorophyll ratio were determined. The addition of nitrate and phosphate to water samples produced significant effects on the chlorophyll a and cell counts, while EDTA acted only on the cell production. Both nitrate and phosphate, when analysed individually, caused a decrease in the value of the carotene/chlorophyll ratio. A synergistic effect of the addition of EDTA and N on the suspended matter was observed.  相似文献   

18.
Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving primarily terrestrially derived C to agricultural streams, which may rely primarily on C derived from algal productivity. We measured allochthonous input, chlorophyll a concentration, and periphyton biomass in each stream, and whole-stream metabolism in six streams. Our results suggest a threshold between moderate- and heavy-agriculture land uses in which terrestrially derived C is replaced by in-stream algal productivity as the primary C source for aquatic consumers. A shift from allochthonous to autochthonous production was not evident in all heavy-agriculture streams, and only occurred in heavy-agriculture streams not impacted by livestock grazing. We then compared our findings to rates of allochthonous input and GPP in streams with minimal human influences in multiple biomes to assess how land-use practices influence C sources to stream ecosystems. The proportion of C derived from allochthonous versus autochthonous sources to heavy-agriculture streams was most similar to grassland and desert streams, while C sources to forested, light-, and moderate-agriculture streams were more similar to deciduous and montane coniferous forest streams. We show that C source to streams is dependent on land use, terrestrial biome, and degradation of in-stream conditions. Further, we suggest that within a biome there seems to be a compensation such that total C input is nearly equal whether it is from allochthonous or autochthonous sources.  相似文献   

19.
1. We aimed to separate the effects of grazers on periphyton via grazing from that of nutrient recycling from their faecal pellets. 2. We set up three different experimental treatments (snails/no snails/faecal pellets) and sampled over 16 days. The ‘snail’ treatment contained a low density (snail biomass c. 14 g?2) of the gastropod grazer Theodoxus fluviatilis and the ‘faecal pellet’ treatment received the same amount of faecal pellets as were produced in the ‘snail’ treatment. Whereas the ‘faecal pellet’ treatment provided extra nutrients to periphyton from the faeces, the ‘snail’ treatment provided nutrients in the form of both faeces and in excreta. There was also direct grazing on periphyton in the ‘snail’ treatment. The ‘no snail’ was not grazed and received no nutrients in faeces or excreta. 3. We measured periphyton C, N and P content, chlorophyll‐a (chl‐a), primary production, bacterial biomass, bacterial production and bacterial respiratory activity. In the water column we measured dissolved inorganic N and soluble reactive P. 4. Snails increased the amount of dissolved inorganic N in the water. On day 16, the periphyton N : P ratio in the ‘faecal pellet’ treatment was lower, and periphyton P content was higher, than in the other two treatments. N : P ratios decreased over time in the ‘faecal pellet’ treatment. Primary and bacterial production were positively correlated in all treatments. 5. Algal chl‐a and primary production of periphyton per unit area and periphyton chl‐a : C ratios increased over the 16 day in the ‘snail’ treatment, and thus excretion of dissolved N by snails had a stronger positive effect on the periphyton community than N and P in faecal pellets. 6. Our data show that excretion and egestion can have different effects on periphyton, probably because of the higher proportion of dissolved N in excreta and the higher proportion of P recycled in faecal pellets. The relative effect of nutrients recycled in egesta or in excretions, probably depends on the form of nutrient limitation of the periphyton. Further, the different components of the periphyton matrix could react differently to the different forms of nutrient recycling. 7. We conclude that direct grazing effects are less important than nutrient effects when nutrients are limiting and grazing pressure is low. Further, the spatial separation of different grazing effects can lead to differences in periphyton production and nutrient stoichiometry. This might be an explanation for the patchiness of periphyton in nature.  相似文献   

20.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号