首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine if functional cholinergic innervation occurs in the frog duodenum or not, the effects of exogenous acetylcholine and electrical transmural stimulation, the contractile activity of an acid extract from the frog duodenum, and the distribution of acetylcholinesterase (AChE) activity in the wall of the frog duodenum were investigated. Acetylcholine caused non-sustained contraction in a dose-dependent manner (100 nM-1 mM). The ED50 value was 17 +/- 2.4 microM. Atropine (500 nM) shifted the dose-response curve for acetylcholine parallel to the right. Transmural stimulation of the frog duodenum caused frequency-dependent (0.5-50 Hz) contraction which was not decreased by atropine (500 nM) at all. The acid extract from the frog duodenum caused contraction of a longitudinal muscle strip of guinea-pig ileum but atropine (500 nM) had no significant effect on the contraction. Only a little AChE activity was found in Auerbach's plexus of the frog duodenum compared with that of the rat ileum. These results suggest that a cholinergic nerve is present in the frog duodenum but its physiological significance is very small.  相似文献   

2.
1. To determine if functional cholinergic innervation occurs in the frog duodenum or not, the effects of exogenous acetylcholine and electrical transmural stimulation, the contractile activity of an acid extract from the frog duodenum, and the distribution of acetylcholinesterase (AChE) activity in the wall of the frog duodenum were investigated.2. Acetylcholine caused non-sustained contraction in a dose-dependent manner (100nM−1 mM). The ed50) value was 17 ± 2.4 μM. Atropine (500 nM) shifted the dose-response curve for acetylcholine parallel to the right.3. Transmural stimulation of the frog duodenum caused frequency-dependent (0.5–50 Hz) contraction which was not decreased by atropine (500 nM) at all.4. The acid extract from the frog duodenum caused contraction of a longitudinal muscle strip of guinea-pig ileum but atropine (500 nM) had no significant effect on the contraction.5. Only a little AChE activity was found in Auerbach's plexus of the frog duodenum compared with that of the rat ileum.6. These results suggest that a cholinergic nerve is present in the frog duodenum but its physiological significance is very small.  相似文献   

3.
To elucidate innervation in the upper esophageal sphincter (UES) muscle of the eel, a key muscle in swallowing, repetitive electrical field stimulation (EFS; 30 mA, 40 V, 300 micros, 10 Hz, 10 trains) was employed. Anatomically, the eel UES muscle consists of striated fibers. The EFS-induced contraction of the UES was completely blocked by tetrodotoxin and curare, and abolished in Ca2+ -free Ringer solution. These results suggest that the EFS stimulates nerve fibers specifically and releases acetylcholine as a neurotransmitter. In fact, acetylcholine and carbachol constricted the UES in a concentration-dependent manner. Even after blocking neuronal firing with tetrodotoxin, acetylcholine constricted the UES muscle, suggesting the existence of acetylcholine receptors on the UES muscle cells. Both EFS- and carbachol-evoked contractions of the UES were blocked by curare at a lower concentration than by atropine or hexamethonium, suggesting that the acetylcholine receptor is nicotinic. Even in Ca2+ -free Ringer solution, a direct current stimulus (2 s duration) constricted the UES muscle to an extent similar to that in the presence of Ca2+, indicating that the muscle contraction itself does not need extracellular Ca2+, i.e., the muscle can be constricted by a release of Ca2+ from the sarcoplasmic reticulum.  相似文献   

4.
1. The alkaloids (curare, atropine, and nicotine) in molluscs and arthropods stimulate and paralyze the central nervous system and peripheral (visceral) ganglia, but do not paralyze the motor nerve endings to skeletal or visceral muscle. 2. They stimulate and paralyze the denervated heart. 3. They paralyze or block the cardioinhibitory nerves, but not the cardioaccelerator nerves. 4. In the Limulus heart these drugs act primarily on the heart ganglion, not on the heart muscle or the intrinsic motor nerve fibers.  相似文献   

5.
The effect of Clostridium perfringens epsilon toxin on rat isolated aorta was investigated. The toxin caused contraction of the isolated aorta in a dose-dependent manner. The toxin induced no contraction of the isolated aorta in low-Na medium and of the tissue stored at 4 C for 7 days. However, tetrodotoxin (TTX) had no effect on the toxin-induced contraction. The toxin-induced contraction was significantly inhibited by phentolamine and prazosine, but did not by atropine, mecamylamine, chlorpheniramine and methysergide. These data suggest that the toxin-caused contraction is mediated through nervous system in rat isolated aorta.  相似文献   

6.
The effect of cholinergic agonists and antagonists on the central pattern generator of the pharyngeal muscles has been studied in third instar larvae of Drosophila. The pharyngeal muscles are a group of rhythmically active fibers involved in feeding. Bath application of the cholinergic agonists carbachol, musarine, pilocarpine, and acetylcholine (ACh) to a semiintact preparation including the pharyngeal muscles and the central nervous system (CNS), initiated long-lasting endogenous-like bursting activity in the muscles. The muscarinic antagonists, atropine and scopolamine, blocked these responses as well as endogenous activity. Perfusion with nicotine elicited a short, tonic response that was marginally blocked by mecamylamine but not by curare, α-bungarotoxin, hexamethonium, or the muscarinic antagonists. This is the first time that a response to cholinergic drugs has been examined in Drosophila. The pharyngeal muscle preparation may prove to be a valuable system for studying mutations of cholinergic metabolism, receptors, and second messengers.  相似文献   

7.
Summary The innervation of the pulmonary vasculature of the semi-arboreal rat snake,Elaphe obsoleta, was examined with glyoxylic acid-induced catecholamine histochemistry, peptide immunohistochemistry, and in vitro perfusion of the pulmonary vasculature. An adrenergic innervation was present on the pulmonary artery, the smaller pulmonary arteries, the veins draining the lung, and the main pulmonary vein. Vasoactive intestinal polypeptide-like immunoreactive axons were observed on the pulmonary artery and vein, small arteries, and occasionally small veins within the lung parenchyma. A dense plexus of substance P-like immunoreactive (SP-LI) axons was observed on the distal extrinsic pulmonary artery. SP-LI axons were found on the more distal arteries within the lung parenchyma, but not on the veins. The distribution of calcitonin gene-related peptide- and SP-LI axons was similar suggesting that the axons are sensory nerves. In the perfused pulmonary vasculature, vagal stimulation caused a predominant vasoconstriction which was abolished by atropine indicating it was cholinergic in nature. A post-stimulus vasodilatation was abolished by bretylium and propranolol indicating it was adrenergic in nature. The responses to nerve stimulation were located in both the extrinsic and intrinsic pulmonary vasculature. No evidence for non-adrenergic, noncholinergic transmission to the vascular smooth muscle was found. The extensive, functional innervation of the main pulmonary artery, as well as the more distal vasculature within the lung, may reflect adaptation to cardiovascular problems imposed by an elongated body and arboreal habits.Abbreviations VIP vasoactive intestinal polypeptide - VIP-LI vasoactive intestinal polypeptide-like immunoreactive - SP substance P - SP-LI substance P-like immunoreactive - SOM somatostatin - SOM-LI somatostatin-like immunoreactive - CGRP calcitonin gene-related peptide - CGRP-LI calcitonin gene-related peptide-like immunoreactive - NANC non-adrenergic noncholinergic - PI perfusion inflow  相似文献   

8.
Buccal mass muscle of the pest slug Deroceras reticulatum was examined by conventional tension recording and the sucrose-gap electrophysiological technique. Elevated potassium salines induced dose-dependent depolarisations accompanied by tonic contractures with superimposed rapid twitch contractions. The latter were suppressed at over 40 mmol · l−1 external potassium, where depolarisation-induced inactivation of voltage-sensitive calcium channels may have occurred. Acetylcholine caused significant dose-dependent depolarisations and tonic contractures, while 5-hydroxy tryptamine induced lower depolarisations accompanied by phasic contractile activity superimposed on low level tonic force. Of the purines examined only guanosine triphosphate caused significant mechanical activity above a threshold of 0.1 μmol · l−1. The tetrapeptides inhibited buccal muscle spontaneous activity, but the related small cardioactive peptide B was weakly excitatory. The amino acids glutamate and gamma-aminobutyric acid were weakly excitatory on buccal muscle while the molluscicides metaldehyde and methiocarb disrupted normal mechanical activity of the feeding musculature. Acetylcholine and 5-hydroxytryptamine appear to have major roles in regulating feeding muscle activity, seemingly modulated by guanosine triphosphate and inhibited by phenylalanine-methionine-arginine-phenylalanine-NH2 and phenylalanine-leucine-arginine-phenylalanine-NH2. Accepted: 22 July 1999  相似文献   

9.
Cholinergic mechanism in Liriope tetraphylla (Cnidaria, Hydrozoa)   总被引:1,自引:0,他引:1  
Crude whole body homogenates of Liriope tetraphylla exhibit a cholinesterase particularly active on acetylthiocholine but not on butyrylthiocholine. The acetylthiocholine hydrolysis is completely blocked by neostigmine. The Michaelis-Menten constant for acetylthiocholine is 0.14 mM. The pharmacological analysis of the responses to the choline esters nicotine and atropine suggests the involvement in Liriope tetraphylla of a cholinergic mechanism in the pointing reflex. Butyrylcholine, nicotine and atropine (but not muscarinic agonists) caused the contraction of the subumbrellar radial muscles. The effects of atropine were dose-dependent and were depressed in competition with muscarinic agonists. MgCl2 interfered with the action of atropine. The results were explained by suggesting the existence, at least at the neuromuscular junction, of excitatory (nicotinic) and inhibitory (muscarinic) pre-synaptic receptors modulating the release of the (unknown) transmitter acting post-synaptically.  相似文献   

10.
The effects of morphine and methionine-enkephalin (met-enkephalin) on the smooth muscle tonus and the contraction induced by transmural stimulation were investigated in the isolated intestinal bulb of carp in vitro. Morphine (30 nM-3 microM) and met-enkephalin (3 nM-5 microM) caused dose-dependent non-sustained contraction. Naloxone (10 nM) inhibited the contraction induced by morphine or met-enkephalin in a competitive manner. Tetrodotoxin (400 nM) or atropine (500 nM) did not inhibit the contraction induced by morphine or met-enkephalin. Cooling of the bath fluid from 20 to 10 degrees C decreased nicotine- and transmural stimulation-induced contraction. But met-enkephalin-induced contraction was not affected. Transmural stimulation-induced contraction (3 Hz) was not affected by pretreatment with morphine, met-enkephalin or naloxone. The results demonstrated that morphine or met-enkephalin caused contraction of the smooth muscle directly through the activation of opiate receptors on the smooth muscle cells and neither morphine nor met-enkephalin regulated the cholinergic neurotransmission presynaptically.  相似文献   

11.
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem‐spinal cord preparation in the split‐bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138–1149, 2016  相似文献   

12.
Summary The fibre composition of the anterior coxa rotator muscle of the locust middle leg (M92) was examined. The muscle is composed of 90–100 fibres. Muscle fibres were characterized with regard to innervation pattern, electrophysiological properties, and morphological parameters. Activity and isoenzyme composition of myofibrillar ATPase, succinic acid dehydrogenase (SDH) activity and glycogen content were examined employing histochemical techniques. Shortening velocity and the dependence of tension on intracellular Ca2+ were determined in skinned fibre experiments. A close match was observed between the innervation pattern of the muscle fibres and their histochemical and physiological properties. The combination of all parameters examined allowed an accurate classification of the muscle fibres into three types. Within a given type, broad variability of some properties was observed (SDH activity, Ca2+ sensitivity) while others assumed distinct values (innervation pattern, shortening velocity). The comprehensive characterization of muscle fibre properties permits a functional interpretation of fibre heterogeneity with regard to muscle performance. Fibres with the same innervation pattern may be recruited specifically, according to their electric properties and Ca2+ sensitivities. The resulting specific recruitment of fibres with different mechanical responses should allow a subtle control of muscular force, with regard to force amplitude, temporal characteristics of contraction, and metabolic cost.Abbreviations CI1 common inhibitory neurone one - ejp ijp excitatory, inhibitory junctional potential - EGTA ethylene glycol-bis[-aminoethyl ether] N,N,N,N-tetraacetic acid - mATPase myofibrillar adenosinetriphosphatase - MOPSO 3-[N-morpholino]-2-hydroxypropanesulfonic acid - M92 anterior rotator muscle of the coxa - n Hill coefficient - pCa50 pCa corresponding to half-maximal tension - P0 maximal isometric tension - SDH succinic acid dehydrogenase - V max maximal shortening velocity  相似文献   

13.
Summary The lung of the giant salamander, Amphiuma tridactylum, is divided into respiratory alveoli by muscular septa that increase the surface area of the lung as well as provide a mechanism for its almost complete collapse during exhalation. The epithelium of the internal surface is of two types: respiratory, composed of a single layer of pneumocytes overlying anastomosing capillaries, and non-respiratory, composed of ciliated cells and mucus-secreting goblet cells. Non-respiratory epithelium covers the apical edges of the septa, whereas the respiratory epithelium lines the alveoli. The smooth muscle of the septa and walls of the lung was studied in preparations of uninflated and acetylcholine-contracted lung. The muscle cells are ultrastructurally similar to other types of smooth muscle but are surrounded by extraordinary amounts of extracellular matrix, containing collagen and elastic fibers and numerous fine fibrils of unknown composition. Smooth muscle in isolated lung strips contracted in a dose-dependent manner when treated with acetylcholine or methacholine; contraction was blocked by atropine. Responses of lung strips to adrenergic agents were limited; only high doses of adrenalin caused slight relaxation of previously contracted muscle. These observations support the hypothesis that contraction of pulmonary smooth muscle is responsible for the ventilatory efficiency of the lung.  相似文献   

14.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

15.
We characterized the innervation of isolated circular and longitudinal-oriented muscle strips from the nulliparous rabbit uterus and cervix by field stimulation (FS). FS with increasing frequency (2.5-50 pps) and voltage (2.5-70 V) caused graded increases in isometric contraction with no relaxation or inhibition of spontaneous activity. Tetrodotoxin (TTX, 3.1 X 10(-6) M) significantly reduced the FS response by 75% in all strips at higher stimulus frequencies. Contractile responses to FS were also significantly inhibited by atropine (3.5 X 10(-6) M) in circular uterus and in longitudinal cervix. Guanethidine (5 X 10(-6) M) reduced the response in all strips, as did phentolamine (3.6 X 10(-6) M) in longitudinal uterus and circular cervix. Propranolol (3.9 X 10(-6) M) did not significantly change the response in longitudinal uterus or circular cervix. In longitudinal uterus, combined guanethidine and atropine produced significant inhibition, but not statistically different from either drug alone. Similar results were seen in circular uterus. Electron microscopy and glyoxylic acid histofluorescence indicate that both blood vessels and smooth muscle in rabbit uterus are supplied with adrenergic nerves. The results suggest the presence of TTX-sensitive adrenergic and cholinergic excitatory innervation of rabbit uterus and cervix.  相似文献   

16.
Vasoactive intestinal peptide (VIP) caused a dose-dependent fall in lower esophageal sphincter (LES) pressure and dose-dependent contractions in the body of the esophagus. The response to VIP in the esophagus or LES was not modified by atropine, phentolamine, haloperidol, pyrilamine, methysergide, indomethacin and tetrodotoxin, showing that it exerts direct action at the esophageal smooth muscle. These studies suggest that VIP causes contraction in the esophageal body and relaxation of the LES by a direct action on the smooth muscle. It is possible that VIP may be the common mediator of noncholinergic, nonadrenergic neurons that cause relaxation of the lower esophageal sphincter and contraction in the esophageal body.  相似文献   

17.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

18.
The existence of substance P immunoreactive nerves in the trachea of guinea pig is known. In this study, capsaicin induced a long-lasting and marked contraction in the guinea pig trachea and nicotine-induced contraction was partially reduced in the capsaicin-treated muscle. Furthermore, the contractile response to nicotine (10(-5) M) in the presence of atropine (10(-7) M) was abolished by a substance P antagonist, [D-Arg1, D-Pro2, D-Trp7,9 Leu11]substance P (10(-5) M). These findings suggest that noncholinergic contractile response to nicotine may be due to the release of material(s) resembling substance P in the isolated tracheal smooth muscle preparation of guinea pig.  相似文献   

19.
The association of proctolin with the external ventral protractor muscle of the VIIth abdominal segment (M234) of Locusta migratoria was investigated using immunohistochemistry and RP-HPLC in conjunction with the sensitive locust oviduct bioassay. Immunohistochemistry of whole-mount tissues revealed two proctolin-like immunoreactive axons in N2B2b1 (the nerve branch which innervates M234) as well as immunoreactive processes and varicosities on the surface of M234. Immunogold staining of M234 demonstrated that the proctolin-like immunoreactivity was present in electron-dense granules in its motor terminals. A material indistinguishable from proctolin and with proctolin-like bioactivity co-eluted with authentic proctolin on two different RP-HPLC systems. Bath application of proctolin at concentrations greater than 10-11 M resulted in a dose-dependent increase in the neurally-evoked fast twitch amplitude and duration of M234. Concentrations greater than 10-9 M resulted in a dose-dependent increase in basal tonus of M234. These results indicate that proctolin, or a peptide very similar to proctolin, is present in the motor innervation of M234 and acts as a cotransmitter and/or neuromodulator at this typical fast skeletal muscle.Abbreviations M234 external ventral protractor muscle of the Vllth abdominal segment - RP-HPLC reverse-phase high pressure liquid chromatography - TFA trifluoroacetic acid  相似文献   

20.
A Ahmad  R C Singh  B D Garg 《Life sciences》1978,22(12):1049-1058
A study was undertaken to find out whether ATP or some other purine nucleotide plays a neurotransmitter role in the chick gut. ATP, ADP and AMP produced a dose-dependent contraction of the isolated ileum. The EC50 of ATP was 20 times less than that of ADP and much less than that of AMP. ATP-induced contractions were completely resistant to blockade either by atropine or promethazine and were partially resistant to blockade by methysergide. Quinine blocked the effect of ATP as well as that of carbachol, 5-HT and histamine while caffeine blocked the effect of ATP only. Electrical stimulation of Remak's nerve resulted in contraction of the ileum while resembled that produced by ATP. The electrically-induced contraction was not affected by atropine, promethazine and methysergide but was blocked by either quinine or caffeine. These findings suggest that ATP or a related compound may be acting as a chemical transmitter in Remak's nerve supplying the sympathetic innervation to the ileum of the chick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号