首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.  相似文献   

2.
Upon induction of a bacteriophage lambda lysogen, a site-specific recombination reaction excises the phage genome from the chromosome of its bacterial host. A critical regulator of this process is the phage-encoded excisionase (Xis) protein, which functions both as a DNA architectural factor and by cooperatively recruiting integrase to an adjacent binding site specifically required for excision. Here we present the three-dimensional structure of Xis and the results of a structure-based mutagenesis study to define the molecular basis of its function. Xis adopts an unusual "winged"-helix motif that is modeled to interact with the major- and minor-grooves of its binding site through a single alpha-helix and loop structure ("wing"), respectively. The C-terminal tail of Xis, which is required for cooperative binding with integrase, is unstructured in the absence of DNA. We propose that asymmetric bending of DNA by Xis positions its unstructured C-terminal tail for direct contacts with the N-terminal DNA-binding domain of integrase and that an ensuing disordered to ordered transition of the tail may act to stabilize the formation of the tripartite integrase-Xis-DNA complex required for phage excision.  相似文献   

3.
The P2 Cox protein is known to repress the Pc promoter, which controls the expression of the P2 immunity repressor C. It has also been shown that Cox can activate the late promoter PLL of the unrelated phage P4. By this process, a P2 phage infecting a P4 lysogen is capable of inducing replication of the P4 genome, an example of viral transactivation. In this report, we present evidence that Cox is also directly involved in both prophage excision and phage integration. While purified Cox, in addition to P2 Int and Escherichia coli integration host factor, was required for attR x attL (excisive) recombination in vitro, it was inhibitory to attP x attB (integrative) recombination. The same amounts of Int and integration host factor which mediated optimal excisive recombination in vitro also mediated optimal integrative recombination. We quantified and compared the relative efficiencies of attB, attR, and attL in recombination with attP and discuss the functional implications of the results. DNase I protection experiments revealed an extended 70-bp Cox-protected region on the right arm of attP, centered at about +60 bp from the center of the core sequence. Gel shift assays suggest that there are two Cox binding sites within this region. Together, these data support the theory that in vivo, P2 can exert control over the direction of recombination by either expressing Int alone or Int and Cox together.  相似文献   

4.
5.
Mycobacteriophage Bxb1 integrates its DNA at the attB site of the Mycobacterium smegmatis genome using the viral attP site and a phage-encoded integrase generating the recombinant junctions attL and attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchange without the necessity for complex higher order macromolecular architectures. To elucidate the regulatory mechanism for the integration and excision reactions, we have identified a Bxb1-encoded recombination directionality factor (RDF), the product of gene 47. Bxb1 gp47 is an unusual RDF in that it is relatively large (˜28 kDa), unrelated to all other RDFs, and presumably performs dual functions since it is well conserved in mycobacteriophages that utilize unrelated integration systems. Furthermore, unlike other RDFs, Bxb1 gp47 does not bind DNA and functions solely through direct interaction with integrase–DNA complexes. The nature and consequences of this interaction depend on the specific DNA substrate to which integrase is bound, generating electrophoretically stable tertiary complexes with either attB or attP that are unable to undergo integrative recombination, and weakly bound, electrophoretically unstable complexes with either attL or attR that gain full potential for excisive recombination.  相似文献   

6.
The genome of the Streptomyces temperate phage phiC31 integrates into the host chromosome via a recombinase belonging to a novel group of phage integrases related to the resolvase/invertase enzymes. Previously, it was demonstrated that, in an in vitro recombination assay, phiC31 integrase catalyses integration (attP/attB recombination) but not excision (attL/attR). The mechanism responsible for this recombination site selectivity was therefore investigated. Purified integrase was shown to bind with similar apparent binding affinities to between 46 bp and 54 bp of DNA at each of the attachment sites, attP, attB, attL and attR. Assays using recombination sites of 50 bp and 51 bp for attP and attB, respectively, showed that these fragments were functional in attP/attB recombination and maintained strict site selectivity, i.e. no recombination between non-permissive sites, such as attP/attP, attB/attL, etc., was observed. Using bandshifts and supershift assays in which permissive and non-permissive combinations of att sites were used in the presence of integrase, only the attP/attB combination could generate supershifts. Recombination products were isolated from the supershifted complexes. It was concluded that these supershifted complexes contained the recombination synapse and that site specificity, and therefore directionality, is determined at the level of stable synapse formation.  相似文献   

7.
V(D)J重组分为两步,第一步是对特定DNA序列的识别和切割,第二步是断理解末端的解离和重接。V(D)J重组过程中的切割是由RAG蛋白介导的,RAG蛋白在第二阶段起什么样的作用还是一个模糊的问题,但目前已有实验显示RAG蛋白在末端重接反应中亦起着重要的结构性(或许还有催化性)作用。RAG蛋白激活V(D)J重组的活性还受其它一些因素的调节。所有这些都揭示RAG蛋白在其他因素辅助下参与了V(D)J重组的全过程。  相似文献   

8.
Functional retroviral integrase protein is thought to be essential for productive viral replication. Yet, previous studies differed on the extent to which integrase mutant viruses expressed human immunodeficiency virus type 1 (HIV-1) genes from unintegrated DNA. Although one reason for this difference was that class II integrase mutations pleiotropically affected the viral life cycle, another reason apparently depended on the identity of the infected cell. Here, we analyzed integrase mutant viral infectivities in a variety of cell types. Single-round infectivity of class I integration-specific mutant HIV-1 ranged from <0.03 to 0.3% of that of the wild type (WT) across four different T-cell lines. Based on this approximately 10-fold influence of cell type on mutant gene expression, we examined class I and class II mutant replication kinetics in seven different cell lines and two primary cell types. Unexpectedly, some cell lines supported productive class I mutant viral replication under conditions that restricted class II mutant growth. Cells were defined as permissive, semipermissive, or nonpermissive based on their ability to support the continual passage of class I integration-defective HIV-1. Mutant infectivity in semipermissive and permissive cells as quantified by 50% tissue culture infectious doses, however, was only 0.0006 to 0.005% of that of WT. Since the frequencies of mutant DNA recombination in these lines ranged from 0.023 to <0.093% of the WT, we conclude that productive replication in the absence of integrase function most likely required the illegitimate integration of HIV-1 into host chromosomes by cellular DNA recombination enzymes.  相似文献   

9.
10.
Holliday junctions are central intermediates in site-specific recombination reactions mediated by tyrosine recombinases. Because these intermediates are extremely transient, only artificially assembled Holliday junctions have been available for study. We have recently identified hexapeptides that cause the accumulation of natural Holliday junctions of bacteriophage lambda Integrase (Int)-mediated reactions. We now show that one of these peptides acts after the first DNA cleavage event to stabilize protein-bound junctions and to prevent their resolution. The peptide acts before the step affected by site affinity (saf) mutations in the core region, in agreement with a model that the peptide stabilizes the products of strand exchange (i.e. Holliday junctions) while saf mutations reduce ligation of exchanged strands.Strand exchange events leading to Holliday junctions in phage lambda integration and excision are asymmetric, presumably because interactions between Int and some of its core-binding sites determine the order of strand cleavage. We have compared the structure of Holliday junctions in one unidirectional and in two bidirectional Int-mediated pathways and show that the strand cleavage steps are much more symmetric in the bidirectional pathways. Thus Int-DNA interactions which determine the order of top and bottom strand cleavage and exchange are unique in each recombination pathway.  相似文献   

11.
V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein-DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.  相似文献   

12.
A mutated excisionase (Xis) protein of coliphage HK022 whose single Cys residue was replaced by Ser does not bind to its two tandem binding sites (X1, X2) on the P arm of attR. Despite its DNA-binding inability the protein showed 30% excision activity of the wild type Xis both in vitro and in vivo. This partial activity is attributed to the interaction of Xis with integrase that is retained in the mutant protein. This protein-protein interaction occurs in the absence of DNA binding.  相似文献   

13.
14.
HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xis frequently carried a prophage that had suffered a site-specific internal DNA inversion. The inversion is a product of recombination between the phage attachment site and a secondary attachment site located within the HK022 left operon. In the absence of both Fis and Xis, the majority of lysogens carried a prophage with an inversion. Inversion occurs during lysogenization at about the same time as prophage insertion but is rare during lytic phage growth. Phages carrying the inverted segment are viable but have a defect in lysogenization, and we therefore suggest that prevention of this rearrangement is an important biological role of Xis and Fis for HK022. Although Fis and Xis are known to promote excision of lambda prophage, they had no detectable effect on lambda recombination at secondary attachment sites. HK022 cIts lysogens that were blocked in excisive recombination because of mutation in fis or xis typically produced high yields of phage after thermal induction, regardless of whether they carried an inverted prophage. The usual requirement for prophage excision was bypassed in these lysogens because they carried two or more prophages inserted in tandem at the bacterial attachment site; in such lysogens, viable phage particles can be formed by in situ packaging of unexcised chromosomes.  相似文献   

15.
16.
Expression and V(D)J recombination activity of mutated RAG-1 proteins.   总被引:22,自引:7,他引:22       下载免费PDF全文
The products of the RAG-1 and RAG-2 genes are essential for the recombination of the DNA encoding the antigen receptors of the developing immune system. Little is known of the specific role these genes play. We have explored the sequences encoding mouse RAG-1 by deleting large parts of the gene and by introducing local sequence changes. We find that a RAG-1 gene with 40% of the coding region deleted still retains its recombination function. In addition, a series of small deletions within the strongly conserved remaining 60% of the coding region was tested. Nine out of ten of these prove unable to provide RAG-1 activity, but one is quite active. Certain peptide sequences were also specifically targeted for mutagenesis. The RAG-1 protein generated from this expression system is transported to the nucleus and is degraded with a 15 minute half-life. The fate of the proteins made by the deletion mutants were also assessed. Transport of RAG-1 protein to the nucleus was found even with the most extensive deletions studied. The functionality of the deleted proteins is discussed with relation to an alignment of RAG-1 sequences from five animal species.  相似文献   

17.
Phage lambda integrative and excisive recombination normally proceeds by a pair of sequential strand exchanges. During the first exchange reaction, the "top" strand in each recombination site is cleaved, exchanged, and religated generating a Holliday junction intermediate. This intermediate DNA structure is resolved through a pair of reciprocal "bottom" strand exchanges, leading to recombinant products. The strict co-ordination of exchange reactions ensures religation between correct partner strands only. Here we show that the directionality of recombination is altered in vivo by two mutant integrases, Int-h (E174 K) and a double mutant Int-h/218 (E174 K/E218 K). This change in directionality leads to deletion instead of inversion on substrates that carry inverted attachment sites and, depending on the pair of target sites employed, requires the presence or absence of integration host factor. Neither Fis nor Xis is involved in deletion. Sequence analyses of deletion products reveal that the newly generated hybrid attachment site exhibits a reversed genetic polarity. We demonstrate that only one of two possible hybrid site configurations is generated and discuss two pathways leading to deletion. In the first, deletion results from a wrong alignment of the two recombination sites within the synaptic complex. In the second pathway, the unco-ordinated cleavage by the mutant integrases of all four DNA strands present in a conventional Holliday junction intermediate leads to two double-stranded breaks, whereby the subsequent rejoining between "wrong" partner strands appears restricted to only two strands.  相似文献   

18.
The roles of purified Int and Xis proteins of the conjugative transposon Tn 916 in excision of a deletion derivative of the closely related element Tn 1545 were investigated. At a low salt concentration (37.5 mM NaCl), Int alone was able to promote limited excision to produce a covalently closed circular form of the transposon, showing that Tn 916 Int can catalyze both DNA cleavage and strand exchange. This reaction was stimulated by Xis. At higher salt concentrations (150 mM NaCl), excision by Int alone was reduced to barely detectable levels and Xis was required for excision. The low salt, Xis-stimulated reaction was approximately 8-fold more efficient than the high salt, Xis-dependent reaction. These results reflect in vivo requirements for Int and Xis in excision.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号