首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptic subtelomeric chromosome rearrangements are a major cause of mild to severe mental retardation pointing out the necessity of sensitive screening techniques to detect such aberrations among affected patients. In this prospective study a group of 30 patients with unexplained developmental retardation and dysmorphic features or congenital abnormalities were analysed using the recently published multiplex FISH telomere (M-TEL) integrity assay in combination with conventional G-banding analysis. The patients were selected by one or more of the following criteria defined by de Vries et al.: (a) family history with two or more affected individuals, (b) prenatal onset growth retardation, (c) postnatal growth abnormalities, (d) facial dysmorphic features, (e) non-facial dysmorphism and congenital abnormalities. In addition, we included two patients who met these criteria and revealed questionable chromosome regions requiring further clarification. In four patients (13.3%) cryptic chromosome aberrations were successfully determined by the M-TEL integrity assay and in two patients with abnormal chromosome regions intrachromosomal aberrations were characterized by targetted FISH experiments. Our results accentuate the requirement of strict selection criteria prior to patient testing with the M-TEL integrity assay. Another essential precondition is high-quality banding analysis to identify structural abnormal chromosomes. The detection of familial balanced translocation carriers in 50% of the cases emphasizes the significance of such an integrated approach for genetic counselling and prenatal diagnosis.  相似文献   

2.
Subtelomeric chromosomal rearrangements detected in patients with idiopathic mental retardation and dysmorphic features: Cryptic aberrations involving the subtelomeric regions of chromosomes are thought to be responsible for idiopathic mental retardation (MR) and multiple congenital anomalies, although the exact incidence of these aberrations is still unclear. With the advent of chromosome-specific telomeric Fluorescence In Situ Hybridization (FISH) probes, it is now possible to identify submicroscopic rearrangements of distal ends of the chromosomes that can not be detected by conventional cytogenetic methods. In this study, cryptic subtelomeric chromosomal aberrations were detected in two of ten patients with idiopathic MR and dysmorphic features by using FISH probes of subtelomeric regions of all chromosome arms. A cryptic unbalanced de novo translocation was detected between the subtelomeric regions of the chromosome 10p and 18p in a patient with severe mental retardation, sensorineuronal deafness and several dysmorphic features. In the other patient, with mild mental retardation and dysmorphic features, a de novo subtelomeric deletion of chromosome 2q was found. In conclusion, in both familial and sporadic cases with idiopathic MR and dysmorphic features, the detection of chromosomal aberrations including subtelomeric rearrangements is of great importance in offering genetic counseling and prenatal diagnosis.  相似文献   

3.
We present a family with three cases of recombination aneusomy rec(5)dup(5q) originating from a large parental pericentric inversion of chromosome 5. The proband--a 6-year-old girl with mental retardation, speech delay, microcephaly, and slight facial dysmorphism--was referred for subtelomere testing. FISH with a Multiprobe Chromoprobe T System (CytoCell) and with several BAC clones mapping to both subtelomere regions of chromosome 5, revealed a recombinant chromosome rec(5)dup(5q) originating from a paternal pericentric inversion inv(5)(p15.33q35.3). The same inversion was present in the proband's father's twin-brother and rec(5)dup(5q) was also identified in his two mentally retarded daughters. The distance of breakpoints from the telomere was: 0.234-1.4 Mb for 5p and 4.1-4.8 Mb for 5q. HR-CGH analysis confirmed the duplication of the 5q subtelomeric region but did not identify any concomitant deletion in the 5p subtelomere. Precise mapping of the aneusomic regions in the proband enabled mapping the cat cry and speech delay to 5p15.33, making the earlier localizations of these features more precise. Our family shows that the large pericentric inversion with both breakpoints at subtelomeric regions of chromosome 5 is associated with a high risk of rec(5)dup(5q) in the progeny.  相似文献   

4.
A cryptic translocation t(5;18)(qter;qter) was detected in a large family, using a FISH-based approach combining subtelomeric probes to allow the subtelomeric regions of most chromosome ends to be analysed for deletions and balanced or unbalanced translocations. Unbalanced karyotypes (duplication 5qter/deficiency 18qter) resulted in a previously undescribed association of moderate to severe mental retardation, microcephaly, pre- and postnatal growth retardation, distinct facial dysmorphism, narrow auditory canals, genital hypoplasia, left heart hypoplasia in one patient and severe behaviour difficulties in another. Some of the features observed in affected individuals are characteristic of known syndromes involving either 18q (growth deficiency, nystagmus, narrow auditory canals, genital hypoplasia, behaviour problems in 18q deletion syndrome) or 5q (umbilical and inguinal hernias, congenital heart defects in distal 5q trisomy).  相似文献   

5.
In this report, we describe three unrelated patients with similar symptoms such as mental retardation, growth delay and multiple phenotypic abnormalities. GTG-banding analysis revealed karyotypes with add(1p) in two cases and an add(1q) in the third. Fluorescence in situ hybridization (FISH) analysis using high resolution multicolor banding (MCB) characterized the aberrations of the abnormal chromosomes 1 as a (sub)terminal duplication and inverted duplications, respectively. Although three different chromosomal regions i.e. 1p36.1, 1p36.2-->1p31.3 and 1q41-->1q44 were involved, all three patients had similar patterns of dysmorphic findings. These cases demonstrate the power of MCB in the characterization of small interstitial chromosomal aberrations and resulted in the characterization of three previously unreported congenital chromosome 1 rearrangements.  相似文献   

6.
A 14-year-old male was referred for evaluation of mental retardation with short stature and dysmorphic features. His karyotype was 46,XY,der(14)t(5;14)(q33;p12)pat, resulting in a pure partial 5q33-q35 trisomy due to the adjacent-1 segregation of a paternal balanced translocation. Paternal blood karyotype revealed a balanced translocation t(5;14)(q33;p12) retaining Ag-Nors. To date, only two cases of pure partial 5q trisomies spanning this region have been reported. Analysis of these cases and the one we report does not allow the delineation of a specific phenotype.  相似文献   

7.
Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome.  相似文献   

8.
We report a newborn male with multiple congenital anomalies including growth retardation, hypotonia, dysmorphic facies, widely-spaced nipples, micropenis, cryptorchidism, optic nerve hypoplasia, heart disease, and a striking, high-pitched cry. Chromosome analysis revealed de novo partial trisomy 11q due to a der(5)t(5;11)(p15.3;q22). Fluorescence in situ hybridization (FISH) showed loss of the 5p telomere signal on the der(5) chromosome, indicating the infant has partial monosomy 5p in addition to partial trisomy 11q. Among cases involving trisomy 11q, an unusual cry has only been documented in the presence of a der(5)t(5p;11q). This apparent dependence of the abnormal cry on monosomy 5p suggested the same genetic mechanism that occurs in Cri du chat syndrome (CDCS) may be responsible for the atypical cry in der(5)t(5p;11q) individuals. Neither a commercial CDCS probe (LSI D5S23, D5S721) nor a series of BAC clones encompassing distal regions implicated in the CDCS-associated cat-cry were deleted in our patient. These results suggest a second cry-modifying locus maps telomeric to BAC RP11-94J21 in band 5p15.33. This locus may not only cause the abnormal cry in individuals with a der(5)t(5p;11q) but could also contribute to the phenotypic variability and discordant mapping studies observed for CDCS.  相似文献   

9.
Emanuel syndrome results from +der(22)t(11q23;22q11). Cleft palate, ear anomalies, heart defects, genital anomalies, hypotonia, and mental retardation are the main features of the syndrome. We report a nine-year-old boy with the t(11;22)(q23;q11) chromosome, transmitted in an unbalanced fashion from his mother, and originated in the maternal grandmother's meiosis. In addition to mental retardation, hypotonia, craniofacial anomalies, and cryptorchidism, he has novel findings such as, joint hyperextensibility, left liver lobe agenesis, left sided malposition of the gallbladder and pancreas hypoplasia. This is the first report associating these features with Emanuel syndrome.  相似文献   

10.
A 13-year-old girl with an unbalanced karyotype 45,XX,-15,der(22)t(15;22)(q13;q13.3) de novo had Prader-Willi syndrome (PWS), (score 13.5), but with features of mental and physical retardation more severe than usually seen in PWS. The clinical diagnosis of PWS was confirmed by methylation analysis that showed absence of the paternal band. With GTG banding, the cytogenetic breakpoint on chromosome 15q13, with 15q14 intact, encompassed the PWS region, while the breakpoint on 22q was terminal. Investigations with FISH utilised ten different probes/combinations, namely SNRPN/PML, TUPLE1/22q13.3, TUPLE/ARSA, GABRB3, three YAC clones and one cosmid for specific regions within chromosome 15q, painting probes for the long arm of chromosomes 15 and 22 and a pantelomere probe. Deletion of SNRPN,TYAC 9 (at 15q11-12), TYAC19 (at 15q13) and GABRB3 (within the PWS locus), was evident on the derivative (22) chromosome, while TYAC10 (at 15q22), cos15-5 (at 15q22) and PML (15q22) were not deleted. On the der(22), 22q13.3 and ARSA were not deleted, but the most distal non specific pantelomeric probe was deleted. Thus, the severe phenotype could be attributable to deletion on chromosome 15q extending beyond q13 to q14, (further than the usual chromosome 15q deletion (q11-13) in PWS), or be related to loss of the very terminal 22q region (from ARSA to the pantelomere) or be due to genetic factors elsewhere in the genome.  相似文献   

11.
The results of comprehensive clinical examination and molecular cytogenetic analysis of a patient carrying chromosome 3p+ in 69% of the peripheral blood lymphocytes are presented. Using microdissection of the metaphase chromosomes followed by DOP-PCR, a DNA library specific for the abnormal chromosome was obtained. By fluorescence in situ hybridization (FISH) of this DNA library with chromosomes from the patient and a healthy donor, the aberrant chromosome was identified as der(3)t(3;10)(3p25;q24.3). Since this chromosome was present in only a proportion of patient's cells studied and no chromosome aberrations were revealed in cells of his parents, the der(3)t(3;10) is suggested to appear de novo. The cells carrying der(3)t(3;10) are monosomic for a proportion of 3p25 and trisomic for 10q24.3-->qter. The developmental malformations revealed in the patient, such as the specific features of facial skeleton, mental retardation, microcephaly, and others are similar to those described previously in patients with partial 3p monosomy and 10q trisomy.  相似文献   

12.
In the search for genetic causes of mental retardation, we have studied a five-generation family that includes 10 individuals in generations IV and V who are affected with mild-to-moderate mental retardation and mild, nonspecific dysmorphic features. The disease is inherited in a seemingly autosomal dominant fashion with reduced penetrance. The pedigree is unusual because of (1) its size and (2) the fact that individuals with the disease appear only in the last two generations, which is suggestive of anticipation. Standard clinical and laboratory screening protocols and extended cytogenetic analysis, including the use of high-resolution karyotyping and multiplex FISH (M-FISH), could not reveal the cause of the mental retardation. Therefore, a whole-genome scan was performed, by linkage analysis, with microsatellite markers. The phenotype was linked to chromosome 16p13.3, and, unexpectedly, a deletion of a part of 16pter was demonstrated in patients, similar to the deletion observed in patients with ATR-16 syndrome. Subsequent FISH analysis demonstrated that patients inherited a duplication of terminal 3q in addition to the deletion of 16p. FISH analysis of obligate carriers revealed that a balanced translocation between the terminal parts of 16p and 3q segregated in this family. This case reinforces the role of cryptic (cytogenetically invisible) subtelomeric translocations in mental retardation, which is estimated by others to be implicated in 5%-10% of cases.  相似文献   

13.
BACKGROUND: Fluorescent subtelomeric probes for the 41 different subtelomeric regions (the p arms of the acrocentric chromosomes were excluded) have been developed over the last 10 years. These probes can detect deletions, duplications, and translocations in the gene-rich subtelomeric regions of human chromosomes, regions where crossing over frequently occurs and where a high number of abnormalities have been found. Recently, commercially produced probes have become available, which has led to the detection of subtelomeric abnormalities in 7.4% of patients with moderate to severe mental retardation (Knight et al., 1999). CASES: We evaluated 43 dysmorphic children with developmental delay and/or mental retardation of unknown etiology and/or autism who were previously assessed for chromosome abnormalities, metabolic disorders, or recognizable dysmorphic syndromes, all of which were ruled out. Of the 43 children tested, 6 (14%) were found to have subtelomeric aberrations. CONCLUSIONS: We recommend that patients with dysmorphic features and mental retardation of unknown etiology who also have a normal standard chromosome analysis should have subtelomeric FISH testing performed earlier in their clinical workup.  相似文献   

14.
A two-year-old girl has the following features of the cri du chat syndrome: microcephaly, hypertelorism, downward slanting of the palpebral fissures, psychomotor retardation and a cat-like cry. She is only of five patients having the cat cry syndrome with 45 chromosomes. Her karyotype is 45,XX, -5, -14, +t(5; 14)(5qter leads to 5p11: : 14q11 leads to 14qter) with the translocation inherited from her mother and maternal grandmother, each of whom is the carrier of a balanced translocation 46,XX,t(5;14)(p11q11). Normal plasma activity for hexosaminidase B suggests the locus for this enzyme is not located in the delected segment of 5 p.  相似文献   

15.
Monosomy 1p36 results from a variety of chromosome rearrangements, including terminal deletions, interstitial deletions, derivative chromosomes, and complex rearrangements. Our previous molecular studies on a large cohort of monosomy 1p36 subjects suggest that a significant percentage of terminal deletions of 1p36 are stabilized by the acquisition of telomeric sequences from other chromosome ends, forming derivative chromosomes (i.e., telomere capture). However, the molecular mechanism(s) that results in and/or stabilizes terminal deletions of 1p36 by telomere capture is poorly understood. In this report, we have mapped the translocation breakpoints in three subjects with der(1)t(1;1)(p36;q44) chromosomes by fluorescence in situ hybridization (FISH). These results indicate that the breakpoint locations are variable in all three subjects, with no common 1p deletion or 1q translocation breakpoints. In addition, sequence analysis of the 1p and 1q breakpoint-containing clones did not identify homologous sequences or low-copy repeats in the breakpoint regions, suggesting that nonallelic homologous recombination did not play a role in mediating these rearrangements. Microsatellite marker analysis indicates that two of the three derivative chromosomes were formed by intra-chromosomal rearrangements. These data are consistent with a number of recent reports in other model organisms that suggest break-induced replication at the site of a double-strand break may act as a mechanism of telomere capture by generating nonreciprocal translocations from terminally deleted chromosomes. Alternative models are also discussed.  相似文献   

16.
Summary Eight patients are reported with a de nov extra inverted duplicated chromosome 15. The abnormal chromosome was considered to be the same in all cases, but its precise delineation remained uncertain and was defined as either 15qter15q12::15q1215pter or 15pter15q11::15q1315pter. Analysis with various techniques of the satellite regions of the bisatellited chromosomes demonstrated maternal derivation in six and paternal derivation in one of the seven families. A nonsister chromatid exchange between the two homologous chromosomes 15 is considered a likely origin of the inv dup(15) in the cases with maternal derivation; in the only case of paternal derivation, however, the abnormal chromosome originated from one single chromosome 15. The clinical findings confirm that patients with inv dup(15) have mental and developmental retardation and are frequently affected by seizures, while severe physical malformations are absent.  相似文献   

17.
Summary We have investigated cytogenetically a total of 35 solitary lipomas, 10 of which have been reported previously. Of the 25 tumours presented herein for the first time, clonal chromosome aberrations were detected in 17. The remaining eight had normal karyotypes, although two of them had nonclonal aberrations in about one quarter of the cells. Based on the cytogenetic findings in all 35 lipomas, four major subgroups can be distinguished. These are characterized by: (I) hyperdiploid karyotypes including one or more supernumerary ring chromosomes (5 cases); (II) diploid karyotypes with mostly balanced rearrangements involving 12q13-14 (13 cases), including the rearrangement t(3;12) (q27-28;q13-14) in 4 cases; (III) hypodiploid or diploid karyotypes with other aberrations than ring chromosomes or rearrangements of 12q13-14 (8 cases); and (IV) normal karyotypes (9 cases).  相似文献   

18.
Ganguly BB  Dalvi R  Mehta AV 《Cytobios》2001,106(411):63-70
Cytogenetic karyotyping in mental retardation associated with physical dysmorphism has been regarded as the primary key for the classification of syndromes and other genetic disorders for the predisposition of neoplasia and other fatal diseases. Giemsa-banding of metaphase chromosomes in lymphocytes is a traditional and routine process for the identification of the chromosomal counterpart which can provide a clue for molecular investigation in the subject. An 8-year-old girl showed a diploid karyotype 46, XX, t(3;12) (p21-pter, q24.1-qter) in peripheral blood lymphocyte culture. Biochemical examination of urine labelled her as a case of phenylketonuria. The maternal karyotyping was similar and confirmed the maternal transmission of the translocation.  相似文献   

19.
Two patients with classical features of Angelman syndrome (AS) and one with Prader-Willi syndrome (PWS) had unbalanced reciprocal translocations involving the chromosome 15 proximal long arm and the telomeric region of chromosomes 7, 8 and 10. Fluorescence isitu hybridization (FISH) was used for the detection of chromosome 15(q11-13) deletions (with probes from the PWS/AS region) and to define the involvement of the telomere in the derivative chromosomes (with library probes and telomere-specific probes). The 15(q11-13) region was not deleted in one patient but was deleted in the other two. The telomere on the derivative chromosomes 7, 8 and 10 was deleted in all three cases. Thus, these are true reciprocal translocations in which there has been loss of the small satellited reciprocal chromosome (15) fragment.  相似文献   

20.
In five families with questionable chromosome rearrangements, we identified an interchromosomal insertion by fluorescent in situ hybridization (FISH). In case 1 with a dir ins (5;11)(p14;q14q24) in three generations, the mentally retarded and microcephalic proband showed a 5p14-->pter deletion. In case 2, a duplication (13)(q21.31--> q31.2) combined with a deletion (11)(q14-->q22) segregated from a reciprocal ins(11;13)(q14q122)(q21.32q31.2), causing a mixed phenotype with psychomotor retardation, caput quadratum, choanal atresia, and pes equinovarus. In case 3, a dir ins (18;5)(q21.3;p13.1p14) was associated with spontaneous abortions, in case 4, the proband with mental retardation, microcephaly, and a heart defect showed a pure trisomy of (12)(q13-->q15), which had segregated from a carrier of an ins (18;12)(p11.3;q13q15). In case 5, a duplication of (10)(q26.3-->q25.2) segregated from an inv ins(5;10)(q15;q26.3q25.2), which was passed on directly from a mother to her son,with mental retardation. In all families the elucidation of the insertional translocation (IT) considerably increased the associated genetic risks of carriers. For the review, we collected data from 81 articles on 87 IT probands on ascertainment, origin, familial transmittance, progeny, and genetic risks of IT carriers. We also discussed the recombinant chromosomes and complex rearrangements associated with ITs, and listed chromosome regions occurring solely as deletions, or solely as duplications, or as both to facilitate genotype/phenotype correlations. We conclude that ITs are rare chromosomal rearrangements with an 1:80,000 incidence, of which nearly 80% were referred because of congenital abnormalities and mental retardation. A maternal origin was seen in 59.5%, a paternal origin in 26.6%, and 13.9% were de novo. No notable difference in fertility between male and female IT carriers was noticed. Bias of ascertainment was excluded in 15 familial cases and led to an estimate of the genetic risks for IT carriers of 32.0-36.0%. The mean size of the inserted regions occurring solely as duplications (n=39) measures 0.96% of the haploid autosomal length (HAL), and of regions solely occurring as deletions (n=14) 0.47% HAL. In the families where both aneusomies occurred, the size of the insertions ranged between 0.22 and 1.21% HAL. Overall, the findings fit with the general idea that a surplus of genetic material is tolerated more easily than a deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号