首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ‐binding protein, promotes Z‐ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled‐coil protein we named ZauP. ZapA and ZauP co‐localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z‐rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z‐ring through a bundling‐independent mechanism. The zauPzapA operon is present in diverse Gram‐negative bacteria, indicating a common mechanism for Z‐ring assembly.  相似文献   

2.
Cell division in Escherichia coli begins with the polymerization of FtsZ into a ring‐like structure, the Z‐ring, at midcell. All other division proteins are thought to require the Z‐ring for recruitment to the future division site. Here, it is reported that the Z‐ring associated proteins ZapA and ZapB form FtsZ‐independent structures at midcell. Upon Z‐ring disruption by the FtsZ polymerization antagonist SulA, ZapA remained at midcell as a cloud‐like accumulation. Using ZapA(N60Y), a variant defective for interaction with FtsZ, it was established that these ZapA structures form without a connection to the Z‐ring. Furthermore, midcell accumulations of GFP‐ZapA(N60Y) often preceded Z‐rings at midcell and required ZapB to assemble, suggesting that ZapB polymers form the foundation of these structures. In the absence of MatP, a DNA‐binding protein that links ZapB to the chromosomal terminus region, cloud‐like ZapA structures still formed but failed to track with the chromosome terminus and did not consistently precede FtsZ at midcell. Taken together, the results suggest that FtsZ‐independent structures of ZapA–ZapB provide additional positional cues for Z‐ring formation and may help coordinate its assembly with chromosome replication and segregation.  相似文献   

3.
BACKGROUND: Cytokinesis in bacteria is mediated by a cytokinetic ring, termed the Z ring, which forms a scaffold for recruitment of other cell-division proteins. The Z ring is composed of FtsZ filaments, but their organization in the Z ring is poorly understood. In Escherichia coli, the Min system contributes to the spatial regulation of cytokinesis by preventing the assembly of the Z ring away from midcell. The effector of the Min system, MinC, inhibits Z ring assembly by a mechanism that is not clear. RESULTS: Here, we report that MinC controls the scaffolding function of FtsZ by antagonizing the mechanical integrity of FtsZ structures. Specifically, MinC antagonizes the ability of FtsZ filaments to be in a solid-like gel state. MinC is a modular protein whose two domains (MinC(C) and MinC(N)) synergize to inhibit FtsZ function. MinC(C) interacts directly with FtsZ polymers to target MinC to Z rings. MinC(C) also prevents lateral interactions between FtsZ filaments, an activity that seems to be unique among cytoskeletal proteins. Because MinC(C) is inhibitory in vivo, it suggests that lateral interactions between FtsZ filaments are important for the structural integrity of the Z ring. MinC(N) contributes to MinC activity by weakening the longitudinal bonds between FtsZ molecules in a filament leading to a loss of polymer rigidity and consequent polymer shortening. On the basis of our results, we develop the first computational model of the Z ring and study the effects of MinC. CONCLUSIONS: Control over the scaffolding activity of FtsZ probably represents a universal regulatory mechanism of bacterial cytokinesis.  相似文献   

4.
Assembly of the cell division apparatus in bacteria starts with formation of the Z ring on the cytoplasmic face of the membrane. This process involves the accumulation of FtsZ polymers at midcell and their interaction with several FtsZ-binding proteins that collectively organize the polymers into a membrane-associated ring-like configuration. Three such proteins, FtsA, ZipA, and ZapA, have previously been identified in Escherichia coli. FtsA and ZipA are essential membrane-associated division proteins that help connect FtsZ polymers with the inner membrane. ZapA is a cytoplasmic protein that is not required for the fission process per se but contributes to its efficiency, likely by promoting lateral interactions between FtsZ protofilaments. We report the identification of YcbW (ZapC) as a fourth FtsZ-binding component of the Z ring in E. coli. Binding of ZapC promotes lateral interactions between FtsZ polymers and suppresses FtsZ GTPase activity. This and additional evidence indicate that, like ZapA, ZapC is a nonessential Z-ring component that contributes to the efficiency of the division process by stabilizing the polymeric form of FtsZ.  相似文献   

5.
FtsZ, the essential regulator of bacterial cell division, is a dynamic cytoskeletal protein that forms helices that condense into the Z‐ring prior to division. Two small coiled‐coil proteins, ZapA and ZapB, are both recruited early to the Z‐ring. We show here that ZapB is recruited to the Z‐ring by ZapA. A direct interaction between ZapA and ZapB is supported by bacterial two‐hybrid and in vitro interaction assays. Using high‐resolution 3‐D reconstruction microscopy, we find that, surprisingly, ZapB is located inside the Z‐ring in virtually all cells investigated. We propose a molecular model in which ZapA increases lateral interactions between FtsZ proto‐filaments and ZapB mediates further stabilization of this interaction by cross‐linking ZapA molecules bound to adjacent FtsZ proto‐filaments. Gene deletion and complementation assays show that ZapB can mitigate cell division and Z‐ring assembly defects even in the absence of ZapA, raising the possibility that ZapB stimulates Z‐ring assembly by two different mechanisms.  相似文献   

6.
FtsZ is the major cytoskeletal component of the bacterial cell division machinery. It forms a ring-shaped structure (the Z ring) that constricts as the bacterium divides. Previous in vivo experiments with green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching have shown that the Escherichia coli Z ring is extremely dynamic, continually remodeling itself with a half time of 30 s, similar to microtubules in the mitotic spindle. In the present work, under different experimental conditions, we have found that the half time for fluorescence recovery of E. coli Z rings is even shorter (approximately 9 s). As before, the turnover appears to be coupled to GTP hydrolysis, since the mutant FtsZ84 protein, with reduced GTPase in vitro, showed an approximately 3-fold longer half time. We have also extended the studies to Bacillus subtilis and found that this species exhibits equally rapid dynamics of the Z ring (half time, approximately 8 s). Interestingly, null mutations of the FtsZ-regulating proteins ZapA, EzrA, and MinCD had only modest effects on the assembly dynamics. This suggests that these proteins do not directly regulate FtsZ subunit exchange in and out of polymers. In B. subtilis, only 30 to 35% of the FtsZ protein was in the Z ring, from which we conclude that a Z ring only 2 or 3 protofilaments thick can function for cell division.  相似文献   

7.
Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into 15N2H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA.  相似文献   

8.
In Escherichia coli FtsZ organizes into a cytoskeletal ring structure, the Z ring, which effects cell division. FtsZ is a GTPase, but the free energy of GTP hydrolysis does not appear to be used for generation of the constriction force, leaving open the question of the function of the GTPase activity of FtsZ. Here we study the mechanism by which SulA, an inhibitor of FtsZ induced during the SOS response, inhibits FtsZ function. We studied the effects of SulA on the in vitro activities of FtsZ, on Z rings in vivo, and on a kinetic model for FtsZ polymerization in silico. We found that the binding of SulA to FtsZ is necessary but not sufficient for inhibition of polymerization, since the assembly of FtsZ polymers in the absence of the GTPase activity was not inhibited by SulA. We developed a new model for FtsZ polymerization that accounts for the cooperativity of FtsZ and could account for cooperativity observed in other linear polymers. When SulA was included in the kinetic scheme, simulations revealed that SulA with strong affinity for FtsZ delayed, but did not prevent, the assembly of polymers when they were not hydrolyzing GTP. Furthermore, the simulations indicated that SulA controls the assembly of FtsZ by binding to a polymerization-competent form of the FtsZ molecule and preventing it from participating in assembly. In vivo stoichiometry of the disruption of Z rings by SulA suggests that FtsZ may undergo two cooperative transitions in forming the Z ring.  相似文献   

9.
During bacterial cytokinesis, a proteinaceous contractile ring assembles in the cell middle. The Z ring tethers to the membrane and contracts, when triggered, to form two identical daughter cells. One mechanism for positioning the ring involves the MinC, MinD and MinE proteins, which oscillate between cell poles to inhibit ring assembly. Averaged over time, the concentration of the inhibitor MinC is lowest at midcell, restricting ring assembly to this region. A second positioning mechanism, called Nucleoid Occlusion, acts through protein SlmA to inhibit ring polymerization in the location of the nucleoid. Here, a mathematical model was developed to explore the interactions between Min oscillations, nucleoid occlusion, Z ring assembly and positioning. One-dimensional advection-reaction-diffusion equations were built to simulate the spatio-temporal concentrations of Min proteins and their effect on various forms of FtsZ. The resulting partial differential equations were numerically solved using a finite volume method. The reduced chemical model assumed that the ring is composed of overlapping FtsZ filaments and that MinC disrupts lateral interactions between filaments. SlmA was presumed to break long FtsZ filaments into shorter units. A term was developed to account for the movement of FtsZ subunits in membrane-bound filaments as they touch and align with other filaments. This alignment was critical in forming sharp stable rings. Simulations qualitatively reproduced experimental results showing the incorrect positioning of rings when Min proteins were not expressed, and the formation of multiple rings when FtsZ was overexpressed.  相似文献   

10.
The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.  相似文献   

11.
The Z ring, composed of the tubulin homolog FtsZ, is essential for bacterial cell division. Recently a new protein, ZapA, has been discovered that localizes to the Z ring and stabilizes it, probably by promoting the bundling of FtsZ protofilaments.  相似文献   

12.
In most bacterial cells, cell division is dependent on the polymerization of the FtsZ protein to form a ring‐like structure (Z‐ring) at the midcell. Despite its essential role, the molecular architecture of the Z‐ring remains elusive. In this work we examine the roles of two FtsZ‐associated proteins, ZapA and ZapB, in the assembly dynamics and structure of the Z‐ring in Escherichia coli cells. In cells deleted of zapA or zapB, we observed abnormal septa and highly dynamic FtsZ structures. While details of these FtsZ structures are difficult to discern under conventional fluorescence microscopy, single‐molecule‐based super‐resolution imaging method Photoactivated Localization Microscopy (PALM) reveals that these FtsZ structures arise from disordered arrangements of FtsZ clusters. Quantitative analysis finds these clusters are larger and comprise more molecules than a single FtsZ protofilament, and likely represent a distinct polymeric species that is inherent to the assembly pathway of the Z‐ring. Furthermore, we find these clusters are not due to the loss of ZapB–MatP interaction in ΔzapA and ΔzapB cells. Our results suggest that the main function of ZapA and ZapB in vivo may not be to promote the association of individual protofilaments but to align FtsZ clusters that consist of multiple FtsZ protofilaments.  相似文献   

13.
The tubulin homolog FtsZ forms a polymeric membrane-associated ring structure (Z ring) at midcell that establishes the site of division and provides an essential framework for the localization of a multiprotein molecular machine that promotes division in Escherichia coli. A number of regulatory proteins interact with FtsZ and modulate FtsZ assembly/disassembly processes, ensuring the spatiotemporal integrity of cytokinesis. The Z-associated proteins (ZapA, ZapB, and ZapC) belong to a group of FtsZ-regulatory proteins that exhibit functionally redundant roles in stabilizing FtsZ-ring assembly by binding and bundling polymeric FtsZ at midcell. In this study, we report the identification of ZapD (YacF) as a member of the E. coli midcell division machinery. Genetics and cell biological evidence indicate that ZapD requires FtsZ but not other downstream division proteins for localizing to midcell, where it promotes FtsZ-ring assembly via molecular mechanisms that overlap with ZapA. Biochemical evidence indicates that ZapD directly interacts with FtsZ and promotes bundling of FtsZ protofilaments. Similarly to ZapA, ZapB, and ZapC, ZapD is dispensable for division and therefore belongs to the growing group of FtsZ-associated proteins in E. coli that aid in the overall fitness of the division process.  相似文献   

14.
FtsZ is a bacterial homolog of tubulin that is essential for prokaryotic cytokinesis. In vitro, GTP induces FtsZ to assemble into straight, 5-nm-wide polymers. Here we show that the polymerization of these FtsZ filaments most closely resembles noncooperative (or "isodesmic") assembly; the polymers are single-stranded and assemble with no evidence of a nucleation phase and without a critical concentration. We have developed a model for the isodesmic polymerization that includes GTP hydrolysis in the scheme. The model can account for the lengths of the FtsZ polymers and their maximum steady state nucleotide hydrolysis rates. It predicts that unlike microtubules, FtsZ protofilaments consist of GTP-bound FtsZ subunits that hydrolyze their nucleotide only slowly and are connected by high affinity longitudinal bonds with a nanomolar K(D).  相似文献   

15.
Cell division in bacteria is facilitated by a polymeric ring structure, the Z ring, composed of tubulin-like FtsZ protofilaments. Recently it has been shown that in Bacillus subtilis , the Z ring forms through the cell cycle-mediated remodelling of a helical FtsZ polymer. To investigate how this occurs in vivo , we have exploited a unique temperature-sensitive strain of B. subtilis expressing the mutant protein FtsZ(Ts1). FtsZ(Ts1) is unable to complete Z ring assembly at 49°C, becoming trapped at an intermediate stage in the helix-to-ring progression. To determine why this is the case, we used a combination of methods to identify the specific defect of the FtsZ(Ts1) protein in vivo . Our results indicate that while FtsZ(Ts1) is able to polymerize normally into protofilaments, it is defective in the ability to support lateral associations between these filaments at high temperatures. This strongly suggests that lateral FtsZ association plays a crucial role in the polymer transitions that lead to the formation of the Z ring in the cell. In addition, we show that the FtsZ-binding protein ZapA, when overproduced, can rescue the FtsZ(Ts1) defect in vivo . This suggests that ZapA functions to promote the helix-to-ring transition of FtsZ by stimulating lateral FtsZ association.  相似文献   

16.
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution--it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)--it stabilizes associations of protofilaments.  相似文献   

17.
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.  相似文献   

18.
The assembly of ring-like structures, composed of FtsZ proteins (i.e. the Z ring), is the earliest and most essential process in bacterial cytokinesis. It has been shown that this process is directly regulated by the FtsZ-binding proteins, FtsA, ZapA, and EzrA, in Bacillus subtilis. In this study, protein complexes that are involved in Z-ring formation were chemically cross-linked in vivo, purified by affinity chromatography, and analysed by mass spectrometry. Analysis of the results identified YlmF as a new component of the FtsZ complex. Yeast two-hybrid analysis and fluorescence microscopy of YFP-YlmF in B. subtilis cells indicated YlmF localizes to the division site in an FtsZ-dependent manner. A single disruption of YlmF resulted in a slight elongation of cells; however, simultaneous inactivation of both YlmF and FtsA showed synthetic lethality caused by complete blockage of cell division due to the defect in Z-ring formation. In contrast, the ftsA-null mutant phenotype, caused by inefficient Z-ring formation, could be complemented by overexpression of YlmF. These results suggest that YlmF has an overlapping function with FtsA in stimulating the formation of Z rings in B. subtilis.  相似文献   

19.
Prokaryotes contain cytoskeletal proteins such as the tubulin-like FtsZ, which forms the Z ring at the cell center for cytokinesis, and the actin-like MreB, which forms a helix along the long axis of the cell and is required for shape maintenance. Using time-lapse analysis of Escherichia coli cells expressing FtsZ-GFP, we found that FtsZ outside of the Z ring also localized in a helix-like pattern and moved very rapidly within this pattern. The movement occurred independently of the presence of Z rings and was most easily detectable in cells lacking Z rings. Moreover, we observed oscillation waves of FtsZ-GFP in the helix-like pattern, particularly in elongated cells, and the period of this oscillation was similar to that of the Min proteins. The MreB helix was not required for the rapid movement of FtsZ or the oscillation of MinD. The results suggest that FtsZ not only forms the Z ring but also is part of a highly dynamic, potentially helical cytoskeleton in bacterial cells.  相似文献   

20.
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution—it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)—it stablizes associations of protofilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号