首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New epidemiology assessments of the life span study (LSS) of the atomic bomb survivors in Japan and of other exposed cohorts have been made by the U.S. National Academy of Sciences, the United Nations Committee on the Effects of Atomic Radiation, and the Radiation Research Effects Foundation in Japan. The National Aeronautics and Space Administration (NASA) uses a 3% risk of exposure-induced death (REID) as a basis for setting age- and gender-specific dose limits for astronauts. NASA's dose limits originate from the report of the National Council on Radiation Protection and Measurements (NCRP) in the year 2000 based on analysis of older epidemiology data. We compared the results of the recent analysis of the LSS to the earlier risk projections from the NCRP. Using tissue-specific, incidence-based risk transfer from the LSS data to a U.S. population to project REID values leads to higher risk and reduced dose limits for older astronauts (>40 years) compared to earlier models that were based on mortality risk transfer. Because astronauts and many other individuals should be considered as healthy workers, including never-smokers free of lifetime use of tobacco, we considered possible variations in risks and dose limits that would occur due to the reference population used for estimates. After adjusting cancer rates to remove smoking effects, radiation risks for lung and total cancer were estimated using a mixture model, with equal weights for additive and multiplicative transfer, to be 20% and 30% lower for males and females, respectively, for never-smokers compared to the average U.S. population. We recommend age- and gender-specific dose limits based on incidence-based risk transfer for never-smokers that could be used by NASA. Our analysis illustrates that gaining knowledge to improve transfer models, which entail knowledge of cancer initiation and promotion effects, could significantly reduce uncertainties in risk projections.  相似文献   

2.
This continues the series of general reports on mortality in the cohort of atomic bomb survivors followed up by the Radiation Effects Research Foundation. This cohort includes 86,572 people with individual dose estimates, 60% of whom have doses of at least 5 mSv. We consider mortality for solid cancer and for noncancer diseases with 7 additional years of follow-up. There have been 9,335 deaths from solid cancer and 31,881 deaths from noncancer diseases during the 47-year follow-up. Of these, 19% of the solid cancer and 15% of the noncancer deaths occurred during the latest 7 years. We estimate that about 440 (5%) of the solid cancer deaths and 250 (0.8%) of the noncancer deaths were associated with the radiation exposure. The excess solid cancer risks appear to be linear in dose even for doses in the 0 to 150-mSv range. While excess rates for radiation-related cancers increase throughout the study period, a new finding is that relative risks decline with increasing attained age, as well as being highest for those exposed as children as noted previously. A useful representative value is that for those exposed at age 30 the solid cancer risk is elevated by 47% per sievert at age 70. There is no significant city difference in either the relative or absolute excess solid cancer risk. Site-specific analyses highlight the difficulties, and need for caution, in distinguishing between site-specific relative risks. These analyses also provide insight into the difficulties in interpretation and generalization of LSS estimates of age-at-exposure effects. The evidence for radiation effects on noncancer mortality remains strong, with risks elevated by about 14% per sievert during the last 30 years of follow-up. Statistically significant increases are seen for heart disease, stroke, digestive diseases, and respiratory diseases. The noncancer data are consistent with some non-linearity in the dose response owing to the substantial uncertainties in the data. There is no direct evidence of radiation effects for doses less than about 0.5 Sv. While there are no statistically significant variations in noncancer relative risks with age, age at exposure, or sex, the estimated effects are comparable to those seen for cancer. Lifetime risk summaries are used to examine uncertainties of the LSS noncancer disease findings.  相似文献   

3.
At present, direct data on risk from protracted or fractionated radiation exposure at low dose rates have been limited largely to studies of populations exposed to low cumulative doses with resulting low statistical power. We evaluated the cancer risks associated with protracted exposure to external whole-body gamma radiation at high cumulative doses (the average dose is 0.8 Gy and the highest doses exceed 10 Gy) in Russian nuclear workers. Cancer deaths in a cohort of about 21,500 nuclear workers who began working at the Mayak complex between 1948 and 1972 were ascertained from death certificates and autopsy reports with follow-up through December 1997. Excess relative risk models were used to estimate solid cancer and leukemia risks associated with external gamma-radiation dose with adjustment for effects of plutonium exposures. Both solid cancer and leukemia death rates increased significantly with increasing gamma-ray dose (P < 0.001). Under a linear dose-response model, the excess relative risk for lung, liver and skeletal cancers as a group (668 deaths) adjusted for plutonium exposure is 0.30 per gray (P < 0.001) and 0.08 per gray (P < 0.001) for all other solid cancers (1062 deaths). The solid cancer dose-response functions appear to be nonlinear, with the excess risk estimates at doses of less than 3 Gy being about twice those predicted by the linear model. Plutonium exposure was associated with increased risks both for lung, liver and skeletal cancers (the sites of primary plutonium deposition) and for other solid cancers as a group. A significant dose response, with no indication of plutonium exposure effects, was found for leukemia. Excess risks for leukemia exhibited a significant dependence on the time since the dose was received. For doses received within 3 to 5 years of death the excess relative risk per gray was estimated to be about 7 (P < 0.001), but this risk was only 0.45 (P = 0.02) for doses received 5 to 45 years prior to death. External gamma-ray exposures significantly increased risks of both solid cancers and leukemia in this large cohort of men and women with occupational radiation exposures. Risks at doses of less than 1 Gy may be slightly lower than those seen for doses arising from acute exposures in the atomic bomb survivors. As dose estimates for the Mayak workers are improved, it should be possible to obtain more precise estimates of solid cancer and leukemia risks from protracted external radiation exposure in this cohort.  相似文献   

4.
In an analysis of a follow-up study of a fixed population of 73,330 atomic bomb survivors in Hiroshima and Nagasaki, the slope of an estimated dose response between ionizing radiation and leukemia mortality was found to be steeper (P less than 0.002), by a factor of 2.4, among those who reported epilation within 60 days of the bombings, compared to those who did not experience this sign of acute radiation exposure. The strength of this empirical finding as evidence of biological association in individual radiosensitivity for these two end points is studied here. The major factor complicating the interpretation of this finding as evidence of such an association is the degree of imprecision of the radiation dosimetry system used in assignment of radiation doses to the A-bomb survivors. Using models recently suggested for dealing with dosimetry errors in epidemiological analysis of the A-bomb survivor data, the sensitivity of the apparent association between leukemia mortality and severe epilation to the assumed level of dosimetry error is investigated.  相似文献   

5.
This continues the series of general reports on mortality in the cohort of atomic bomb survivors followed up by the Radiation Effects Research Foundation. This cohort includes 86,572 people with individual dose estimates, 60% of whom have doses of at least 5 mSv. We consider mortality for solid cancer and for noncancer diseases with 7 additional years of follow-up. There have been 9,335 deaths from solid cancer and 31,881 deaths from noncancer diseases during the 47-year follow-up. Of these, 19% of the solid cancer and 15% of the noncancer deaths occurred during the latest 7 years. We estimate that about 440 (5%) of the solid cancer deaths and 250 (0.8%) of the noncancer deaths were associated with the radiation exposure. The excess solid cancer risks appear to be linear in dose even for doses in the 0 to 150-mSv range. While excess rates for radiation-related cancers increase throughout the study period, a new finding is that relative risks decline with increasing attained age, as well as being highest for those exposed as children as noted previously. A useful representative value is that for those exposed at age 30 the solid cancer risk is elevated by 47% per sievert at age 70. There is no significant city difference in either the relative or absolute excess solid cancer risk. Site-specific analyses highlight the difficulties, and need for caution, in distinguishing between site-specific relative risks. These analyses also provide insight into the difficulties in interpretation and generalization of LSS estimates of age-at-exposure effects. The evidence for radiation effects on noncancer mortality remains strong, with risks elevated by about 14% per sievert during the last 30 years of follow-up. Statistically significant increases are seen for heart disease, stroke, digestive diseases, and respiratory diseases. The noncancer data are consistent with some non-linearity in the dose response owing to the substantial uncertainties in the data. There is no direct evidence of radiation effects for doses less than about 0.5 Sv. While there are no statistically significant variations in noncancer relative risks with age, age at exposure, or sex, the estimated effects are comparable to those seen for cancer. Lifetime risk summaries are used to examine uncertainties of the LSS noncancer disease findings.  相似文献   

6.
Of all potentially radiogenic cancers, leukemia, a type of cancer of the blood, has the highest risk attributable to ionizing radiation. Despite this, the quantitative estimation of radiation risk of a leukemia demands studying very large exposed cohorts, because of the very low level of this disease in unexposed populations and because of the tendency for its radiation risk to decrease with time. At present, the Japanese cohort of atomic bomb survivors is still the primary source of data that allows analysis of radiation-induced leukemia and the underlying dose–response relationship. The second large cohort that would allow to study radiation-induced leukemia is comprised of individuals who were exposed due to the accident of the Chernobyl nuclear power plant in 1986. The objective of the present study was to estimate radiation risks of leukemia incidence among the Russian cohort of Chernobyl emergency workers, for different time periods after the accident. Twenty-five years after the Chernobyl accident and based on the results of the present study, one can conclude that the radiation risk of leukemia incidence derived from the Russian cohort of Chernobyl emergency workers is similar to that derived from the cohort of atomic bomb survivors: The time-averaged excess relative risk per Gray (ERR Gy−1) equals 4.98 for the Russian cohort and 3.9 for the life span study (LSS) cohort; excess absolute risk decreases with time after exposure at an annual rate of 9% for the Russian cohort, and of 6.5% for the LSS cohort. Thus, the excess in risk of leukemia incidence in a population due to a single exposure is restricted in time after exposure by the period of about 15 years.  相似文献   

7.
Generalized relative risk models, with adjustments to the relative risk for time after exposure and age at exposure and incorporating a linear-quadratic dose response, were fitted to the latest (Life Span Study Report 12) Japanese atomic bomb survivor cancer mortality data using Bayesian Markov Chain Monte Carlo methods, taking account of random errors in the DS86 dose estimates. The resulting uncertainty distributions in the relative risk model parameters were used to derive uncertainties in population cancer risks for a current UK population. Following an assumed administered dose of 1 Sv, leukaemia mortality risks were estimated to be 1.93×10–2 Sv–1 (95% CI 1.14, 3.38), or 0.44 years of life lost Sv–1 (95% CI 0.22, 0.94). Following an assumed administered dose of 1 Sv, solid cancer mortality risks were calculated to be 10.36×10–2 Sv–1 (95% CI 8.41, 12.42), or 1.38 years of life lost Sv–1 (95% CI 1.11, 1.68). In general, solid cancer risks were very similar to those predicted by classical likelihood-based methods; however, leukaemia risks were somewhat higher, by 10–35%, than those predicted by classical likelihood-based methods. This is so in both cases, irrespective of whether or not adjustments are made in these likelihood-based fits for the effects of measurement errors, and the discrepancy for leukaemia tends to be greater at higher doses. Overall, cancer risks predicted by Bayesian Markov Chain Monte Carlo methods are similar to those derived by classical likelihood-based methods and which form the basis of established estimates of radiation-induced cancer risk. Received: 28 September 1999 / Accepted: 21 August 2000  相似文献   

8.
Some of the problems in determining the cancer risk of low-level radiation from studies of exposed groups are reviewed and applied to the study of Hanford workers by Mancuso, Stewart, and Kneale. Problems considered are statistical limitations, variation of cancer rates with geography and race, the "healthy worker effect," calendar year and age variation of cancer mortality, choosing from long lists, use of proportional mortality rates, cigarette smoking-cancer correlations, use of averages to represent data distributions, ignoring other data, and correlations between radiation exposure and other factors that may cause cancer. The current status of studies of the Hanford workers is reviewed.  相似文献   

9.
Most information on radiation-related cancer risk comes from the Life Span Study (LSS) of the Japanese atomic bomb survivors. Stomach cancer mortality rates are much higher in Japan than in the U.S., making the applicability of LSS findings to the U.S. population uncertain. A unique cohort of U.S. patients who were irradiated for peptic ulcer to control gastric secretion provides a different perspective on risk. Cancer mortality data were analyzed and relative risks estimated for 3719 subjects treated by radiotherapy (mean stomach dose 14.8 Gy) and/or by surgery and medication during the period 1936-1965 and followed through 1997 (average 25 years). Compared to the U.S. rates, stomach cancer mortality was significantly increased for irradiated and nonirradiated patients (observed/expected = 3.20 and 1.52, respectively). We observed strong evidence of exposure-related excess mortality from cancer of the stomach (RR 2.6, 95% CI 1.3, 5.1), pancreas (RR 2.7, 95% CI 1.5, 5.1), and lung (RR 1.5, 95% CI 1.1, 2.1), with commensurate radiation dose responses in analyses that included nonexposed patients. However, the dose responses for these cancers were not significant when restricted to exposed patients. Our excess relative risk per gray estimate of 0.20 at doses 相似文献   

10.
Radiation-related risks of cancer can be transported from one population to another population at risk, for the purpose of calculating lifetime risks from radiation exposure. Transfer via excess relative risks (ERR) or excess absolute risks (EAR) or a mixture of both (i.e., from the life span study (LSS) of Japanese atomic bomb survivors) has been done in the past based on qualitative weighting. Consequently, the values of the weights applied and the method of application of the weights (i.e., as additive or geometric weighted means) have varied both between reports produced at different times by the same regulatory body and also between reports produced at similar times by different regulatory bodies. Since the gender and age patterns are often markedly different between EAR and ERR models, it is useful to have an evidence-based method for determining the relative goodness of fit of such models to the data. This paper identifies a method, using Akaike model weights, which could aid expert judgment and be applied to help to achieve consistency of approach and quantitative evidence-based results in future health risk assessments. The results of applying this method to recent LSS cancer incidence models are that the relative EAR weighting by cancer solid cancer site, on a scale of 0–1, is zero for breast and colon, 0.02 for all solid, 0.03 for lung, 0.08 for liver, 0.15 for thyroid, 0.18 for bladder and 0.93 for stomach. The EAR weighting for female breast cancer increases from 0 to 0.3, if a generally observed change in the trend between female age-specific breast cancer incidence rates and attained age, associated with menopause, is accounted for in the EAR model. Application of this method to preferred models from a study of multi-model inference from many models fitted to the LSS leukemia mortality data, results in an EAR weighting of 0. From these results it can be seen that lifetime risk transfer is most highly weighted by EAR only for stomach cancer. However, the generalization and interpretation of radiation effect estimates based on the LSS cancer data, when projected to other populations, are particularly uncertain if considerable differences exist between site-specific baseline rates in the LSS and the other populations of interest. Definitive conclusions, regarding the appropriate method for transporting cancer risks, are limited by a lack of knowledge in several areas including unknown factors and uncertainties in biological mechanisms and genetic and environmental risk factors for carcinogenesis; uncertainties in radiation dosimetry; and insufficient statistical power and/or incomplete follow-up in data from radio-epidemiological studies.  相似文献   

11.
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.  相似文献   

12.
After ingestion or inhalation of radionuclides, internal organs of the human body will be exposed to ionising radiation. Current risk estimates of radiation-associated cancer from internal emitters are largely based on extrapolation of risk from high-dose externally exposed groups. Concerns have been expressed that extrapolated risk estimates from internal emitters are greatly underestimated, by factors of ten or more, thus implying a severe underestimation of the true risks. Therefore, data on cancer mortality and incidence in a number of groups who received exposure predominantly from internal emitters are examined and excess relative risks per Sv are compared with comparable (age at exposure, time since exposure, gender) matched subsets of the Japanese atomic bomb survivor cohort. Risks are examined separately for low LET and high LET internal emitters. There are eight studies informative for the effects of internal low LET radiation exposure and 12 studies informative for the effects of internal high LET radiation. For 11 of the 20 cancer endpoints (subgroups of particular study cohorts) examined in the low LET internal emitter studies, the best estimate of the excess relative risk is greater than the corresponding estimate in the Japanese atomic bomb survivors and for the other nine it is less. For four of these 20 studies, the relative risk is significantly (2-sided P < 0.05) different from that in the Japanese atomic bomb survivors, in three cases greater than the atomic bomb survivor relative risk and in one case less. Considering only those six low LET studies/endpoints with 100 or more deaths or cases, for four out of six studies/endpoints the internal emitter risk is greater than that in the Japanese atomic bomb survivors. For seven of the 24 cancer endpoints examined in the high LET internal emitter studies the best estimate of the ERR in the internal emitter study is greater than the corresponding estimate in the Japanese atomic bomb survivors and for the other 17 it is less. For six studies, the relative risk is significantly (2-sided P < 0.05) different from that in the Japanese atomic bomb survivors, in one case greater than the atomic bomb survivor relative risk and in five cases less. Considering only those eight high LET studies/endpoints with 100 or more deaths or cases, for five out of eight studies/endpoints the internal emitter risk is greater than that in the Japanese atomic bomb survivors. These results suggest that excess relative risks in the internal emitter studies do not appreciably differ from those in the Japanese atomic bomb survivors. However, there are substantial uncertainties in estimates of risks in the internal emitter studies, particularly in relation to lung cancer associated with radon daughter (alpha particle) exposure, so a measure of caution should be exercised in these conclusions.  相似文献   

13.
This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.  相似文献   

14.
15.
The association between the polymorphic CAG repeat in androgen receptor gene (AR) and prostate cancer susceptibility has been studied extensively. However, the results are contradictory. The purpose of our meta-analysis was to investigate whether CAG repeat related to prostate cancer risk and had genetic heterogeneity across different geographic regions and study designs. Random-effects model was performed irrespective of between-study heterogeneity. Data and study quality were assessed in duplicate. Publication bias was assessed by the fail-safe number and Egger’s test. There were 16 (patients/controls: 2972/3792), 19 (3835/4908) and 12 (3372/2631) study groups for comparisons of ≥20, 22 and 23 repeats of CAG sequence, respectively. Compared with CAG repeat <20, 22 or 23, carriers of ≥20, 22 or 23 repeats had 21% (95% CI: 0.61–1.02; P = 0.076), 5% (95% CI: 0.81–1.11; P = 0.508) and 5% (95% CI: 0.76–1.20; P = 0.681) decreased risk of prostate cancer. After classifying studies by geographic areas, carriers of ≥20 repeats had 11% decreased risk in populations from USA, 53% from Europe, and 20% from Asia (P > 0.05), whereas comparison of ≥23 repeats with others generated a significant prediction in European populations (OR = 1.17; P = 0.039). Stratification by study designs revealed no material changes in risk estimation. Meta-regression analysis found no significant sources of between-study heterogeneity for age, study design and geographic region for all comparisons. There was no identified publication bias. Taken together, our results demonstrated that AR CAG repeat polymorphism with ≥20 repeats might confer a protective effect among the prostate cancer patients with 45 years older but not all the prostate cancer patients.  相似文献   

16.
Among the Life Span Study (LSS) of Atomic-bomb survivors, recent estimates showed that unspecified bladder cancer had high radiation sensitivity with a notably high female-to-male excess relative risk (ERR) per radiation dose ratio and were the only sites for which the ERR did not decrease with attained age. These findings, however, did not consider lifestyle factors, which could potentially confound or modify the risk estimates. This study estimated the radiation risks of the most prevalent subtype of urinary tract cancer, urothelial carcinoma, while accounting for smoking, consumption of fruit, vegetables, alcohol and level of education (a surrogate for socioeconomic status). Eligible study subjects included 105,402 (males = 42,890) LSS members who were cancer-free in 1958 and had estimated radiation doses. Members were censored due to loss of follow-up, incident cancer of another type, death, or the end of calendar year 2001. Surveys (by mail or clinical interview) gathered lifestyle data periodically for 1963-1991. There were 63,827 participants in one or more survey. Five hundred seventy-three incident urothelial carcinoma cases occurred, of which 364 occurred after lifestyle information was available. Analyses were performed using Poisson regression methods. The excess relative risk per weighted gray unit (the gamma component plus 10 times the neutron component, Gy(w)) was 1.00 (95% CI: 0.43-1.78) but the risks were not dependent upon age at exposure or attained age. Lifestyle factors other than smoking were not associated with urothelial carcinoma risk. Neither the magnitude of the radiation ERR estimate (1.00 compared to 0.96), nor the female-to-male (F:M) ERR/Gy(w) ratio (3.2 compared to 3.4) were greatly changed after accounting for all lifestyle factors. A multiplicative model of gender-specific radiation and smoking effects was the most revealing though there was no evidence of significant departures from either the additive or multiplicative joint effect models. Among the LSS cohort members with doses greater than 0.005 Gy(w) (average dose 0.21 Gy(w)), the attributable fraction of urothelial carcinoma due to radiation was 7.1% in males and 19.7% in females. Among current smokers, the attributable fraction of urothelial carcinoma due to smoking was 61% in males and 52% in females. Relative risk estimates of smoking risk were approximately two for smokers compared to nonsmokers. After adjustment for lifestyle factors, gender-specific radiation risks and the F:M ERR/Gy(w), the ratios of excess urothelial carcinoma risk were similar to the estimates without adjusting for lifestyle factors. Smoking was the primary factor responsible for excess urothelial carcinoma in this cohort. These findings led us to conclude that the radiation risk estimates of urothelial carcinoma do not appear to be strongly confounded or modified by smoking, consumption of alcohol, fruits, or vegetables, or level of education.  相似文献   

17.
BackgroundIonizing radiation is a cause of cancer. This paper examines the effects of radiation dose and age at exposure on the incidence of brain cancer using data from the Life Span Study (LSS) of atomic bomb survivors.MethodsThe Radiation Effects Research Foundation website provides demographic details of the LSS population, estimated radiation doses at time of bomb in 1945, person years of follow-up and incident cancers from 1958 to 1998. We modelled brain cancer incidence using background-stratified Poisson regression, and compared the excess relative risk (ERR) per Gray (Gy) of brain dose with estimates from follow-up studies of children exposed to diagnostic CT scans.ResultsAfter exposure to atomic bomb radiation at 10 years of age the estimated ERR/Gy was 0.91 (90%CI 0.53, 1.40) compared with 0.07 (90%CI −0.27, 0.56) following exposure at age 40. Exposure at 10 years of age led to an estimated excess of 17 brain tumors per 100,000 person year (pyr) Gy by 60 years of age. These LSS estimates are substantially less than estimates based on follow-up of children exposed to CT scans.ConclusionEstimates of ERR/Gy for brain cancers in the LSS and haemangioma cohorts seem much smaller than estimates of risk for young persons in the early years after exposure to CT-scans. This could be due to reverse causation bias in the CT cohorts, diagnostic error, measurement error with radiation doses, loss of early follow-up in the LSS, or non-linearity of the dose-response curve.  相似文献   

18.
Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.  相似文献   

19.
In this paper the radiation-associated relative risks of second primary cancer incidence in groups treated for first primary cancer by radiotherapy are compared with radiation-associated relative risk estimates in the Japanese atomic bomb survivor cancer incidence data. For four cancer sites, namely lung cancer, bone cancer, ovarian cancer and leukaemia, the relative risks in the comparable (age at exposure, time since exposure, sex matched) subsets of the Japanese data are significantly greater than those in the majority of second cancer studies. Even when the differences between the relative risks in the Japanese atomic bomb survivors and the medical series do not approach conventional levels of statistical significance, relative risks tend to be higher in the Japanese data than in the second cancer studies. At least for leukaemia, the discrepancy between the Japanese and second cancer risks can be largely explained by cell- sterilisation effects. There are few indications of modification of radiation-associated second cancer relative risk among those treated with adjuvant chemotherapy, nor are there strong indications of modification of radiation- associated relative risk by heritable genetic factors. If anything, there is evidence that second cancer relative excess risks are lower among those patients with cancer-prone disorders than among non-susceptible patients. However, the higher underlying cancer risk in some of these medically exposed populations should also be considered, in particular for those with cancer-prone conditions, so that the absolute excess risk is sometimes higher than in the Japanese data. Received: 14 May 1999 / Accepted in revised form: 17 September 1999  相似文献   

20.
Deaths in the RERF Life Span Study (LSS) sample have been determined for the years 1950-1985 and an analysis of cancer mortality with the revised DS86 doses has been described separately. In this report, we examine the relationship to dose of deaths from all diseases other than cancer. Although the evidence is still limited, there seems to be an excess risk from noncancer death at high doses (2 or 3 Gy and over). Statistically, a pure quadratic or a linear-threshold model [the estimated threshold dose is 1.4 Gy (0.6-2.8 Gy)] is found to fit better than a simple linear or linear-quadratic model. This increase in noncancer mortality is statistically demonstrable, generally, after 1965 and among the younger survivors (less than 40 at the time of the bombing), suggesting a sensitivity for this age group. For specific causes of death, an excess in relative risk at the high dose level, that is, 2 Gy or more, is seen in circulatory and digestive diseases. The relative risk is, however, much smaller than that for cancer. These findings, based as they are on death certificates, have their limitations. Most significant, perhaps, is the possible erroneous attribution of radiation-related cancer deaths to other causes. At present, the contribution such errors may make to the apparent increase in non-cancer deaths at the higher doses cannot be estimated as rigorously as is obviously desirable. However, even now, this increase does not appear to be fully explicable in terms of errors in classification. Further follow-up of mortality in this LSS cohort as well as disease revealed by the biennial physical examinations of the morbidity subsample (Adult Health Study) of the LSS cohort will be needed to confirm this suggestion of a radiation-related increase in mortality from causes other than cancer, and to determine whether it results in a demonstrable life shortening among the heavily exposed A-bomb survivors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号