首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of λ-mediated gene replacement was used to disrupt tufA or tufB on the chromosome of the E. coli K-12 strain MG1655. Both tuf genes, which are almost identical but map in different chromosomal contexts, encode the essential peptide chain elongation factor EF-Tu, one of the most abundant cytoplasmic proteins. Southern analysis confirmed replacement of the chromosomal tufA or tufB gene by a chloramphenicol resistance marker, demonstrating that both tuf genes are individually dispensable for growth. Under conditions of rapid growth, deletion of tufB had no significant effect on growth rate, but deletion of tufA resulted in a 35% increase in generation time. In minimal medium we observed no negative effects of tufA deletion on growth rate. Strains with a single tuf gene are useful for the expression of mutant forms of EF-Tu as the sole species in cells; this was demonstrated by introducing the hybrid tufAhis gene, encoding EF-TuA extended with a C-terminal (His)6 tag, into the chromosome of a strain lacking tufB. Received: 15 July 1998 / Accepted: 13 October 1998  相似文献   

2.
3.
Summary The first isolation of EF-Tu mutations in Salmonella typhimurium is reported. The mutations were isolated by selecting for resistance to the antibiotic mocimycin (= kirromycin). The mocimycin resistant phenotype is the result of mutations in each of two genes, tufA and tufB. Strains mutant in only one of the two tuf genes are sensitive to mocimycin. The spontaneous mutation rate of each of the two tuf genes to a mocimycin resistant phenotype differs by an order of magnitude. tufA maps at minute 71–72, closely linked to rpsL. tufB maps at minute 88–89, closely linked to rpoB. These map positions correspond to the locations of tufA and tufB in E. coli.Abbreviations EF-Tu protein elongation factor Tu - MOC mocimycin  相似文献   

4.
Summary The E. coli chromosome contains two genes for elongation factor Tu, tufA (near the fusidic acid resistance marker) and tufB (near the rifampicin resistance marker). It has been discovered that the mutant E. coli K12 strain HAK88 bears a mutation in the tufB gene, which leads to the synthesis of a protein of increased acidity. To determine whether the mutation has altered the protein's function in peptide chain elongation, we have compared the reactivities of normal tufA EF-Tu and mutant tufB EF-Tu (purified together from HAK88) with the components of the AA-tRNA binding cycle. Normal tufA EF-Tu and mutant tufB EF-Tu are indistinguishable in their affinities for GDP, EF-Ts, and phe-tRNA, and differ only slightly in their affinities for ribosomes. Coupled with the results of a separate study showing the similarity of the normal tufA and tufB gene products, these experiments demonstrate that the mutation has not altered the function of tufB EF-Tu in peptide chain elongation. Contrary to the original report (Kuwano et al., 1974; J. Mol. Biol. 86, 689–698) the HAK88 strains we have examined no longer possess a temperature-sensitive EF-Ts. The growth rates of HAK88 strains resemble the parent HAK8 strain in their lack of tRNA dependence but unlike HAK8 show varying degrees of temperature sensitivity. We conclude that HAK88 contains a physically altered but functionally intact tufB EF-Tu. The mutation in tufB should be valuable for studying in vivo the control of expression of the genes for EF-Tu.  相似文献   

5.
Summary A tufA defective strain of E. coli was isolated which by a single deletion event acquired a tufA-lacZ fusion gene and lost the normal functional tufA gene (see accompanying paper). A correlation between the growth rate and the rate of ribosome synthesis showed that the average rate of protein synthesis was decreased to about 50% in the tufA defective strain whereas the number of EF-Tu molecules per ribosome was about 80% compared to a normal strain. The results indicate that tufB gene expression was preferentially stimulated in the tufA defective strain but the increased EF-TuB synthesis was not sufficient to make up for the loss of normal EF-TuA synthesis. Introduction of a plasmid that carries a complete tufA gene and the preceeding fusA gene but not the str-promotor into the tufA defective strain did not alleviate the slow growth or low rate of EF-Tu synthesis showing that the high rate of EF-TuA synthesis compared to the other proteins in the str operon is not augmented by a strong second promotor for the tufA gene. The tufA-lacZ fusion which takes the place of the normal tufA gene was expressed at a high rate and the -galactosidase activity increased with the growth rate as expected.  相似文献   

6.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

7.
We have used quantitative immunoblotting to estimate the amount of EF-Tu in a variety of S. typhimurium strains with wild-type, mutant, insertionally inactivated or plasmid-borne tuf genes. In the same strains we have measured translation elongation rate, exponential growth rate and the level of nonsense codon readthrough. In the wild-type strain, at moderate to fast growth rates, our data show that EF-Tu makes up 8–9% of total cell protein. Strains with either of the tuf genes insertionally inactivated have 65% of the wild-type EF-Tu level, irrespective of which tuf gene remains active, or whether that gene is wild-type or a kirromycin-resistant mutant. Strains with only one active tuf gene have reduced growth and translation elongation rates. From the magnitude of the reduction in elongation rate relative to the level of EF-Tu we calculate that in glucose minimal medium the in vivo saturation level of wild-type ribosomes by ternary complexes is only 63%. Strains with a ribosome mutation causing a poor interaction with ternary complex are non-viable on minimal medium when the level of EF-Tu is reduced.  相似文献   

8.
The mitochondrial elongation factor EF-Tu (tufM) in rice (Oryza sativa L.) was isolated and characterized. The rice tufM cDNA clone contained 1,726 nucleotides and coded for a 453 amino acid protein including a putative mitochondrial transit peptide of 64 amino acid residues. This coding region was composed of 12 exons and 11 introns. The deduced amino acid sequence showed 62% and 88% identities with rice chloroplast EF-Tu (tufA) and Arabidopsis mitochondrial EF-Tu, respectively. As previously observed for the rice tufA gene, the tufM gene is likely present as one copy in rice. The mitochondrial EF-Tu gene was differentially expressed during flower development, and the other translational EF-Tu genes (chloroplast EF-Tu and cytosolic EF-1 alpha) were also distinctly expressed in a temporal manner. Phylogenetic analysis of the rice tufM gene showed that the mitochondrial tufA homologue of Reclinomonas was more closely related to the mitochondrial tufM genes of flowering plants than fungal and other mitochondrial tuf genes. In addition, the tufM encoded an N-terminal extension showing significant similarity to that of rps14 (or sdhB), which is also a nuclear-encoded rice mitochondrial gene.  相似文献   

9.
10.
A spontaneous deletion, ΔM9, removing part of argCBH and extending through rnnB was isolated. Its endpoints were located by genetic crosses and restriction enzyme analysis of a λ transducing phage carrying ΔM9. Studies on this phage in ultraviolet-irradiated cells showed that ΔM9 places synthesis of EF-Tu, the tufB gene product, under arg control. By contrast the products of rplA and rplK (ribosomal proteins L1 and L11) remain independent of arg control. Thus the promoter for tufB is located counterclockwise of the structural genes on the Excherichia coli chromosome and the adjacent genes rplA and rplK have their own promoter.  相似文献   

11.
《Genomics》2020,112(6):3915-3924
The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.  相似文献   

12.
13.
Summary The two species of Elongation Factor Tu coded for by the tufA and tufB genes were synthesized in UV-irradiated E coli infected by transducing phages bearing the separate genes. Both proteins interact similarly with EFTs, GDP, and phe-tRNA. Although the phe-tRNA·EFTu·GMP·PNP complex containing the tufA gene product binds some-what more tightly to ribosomes, both proteins promote the complete process of binding phe tRNA to ribosomes at similar rates.  相似文献   

14.
A generally applicable system for targeted mutagenesis of a chromosomal sequence is described. The Escherichia coli tufA gene was mutated using a recombinant M13mp9 phage vector carrying a tuf gene. Integration via crossing over with the chromosomal tufA target gene produced an M13 lysogen. These lysogens were screened for resistance to kirromycin. The M13 phage carrying tufA mutations were efficiently retrieved by a genetic procedure. Genetic mapping was performed with the M13 vectors. The same recombinant M13 phage was used for mutagenesis, lysogen formation, gene replacement, retrieval, mapping and sequencing of kirromycin mutants. Three different mutations yielding resistance to kirromycin were found: two of these have previously been found and characterised, while the third mutation, Gly316 Asp, is a new mutant. We also report the identification of a fourth kirromycin-resistant mutant, Gln124 Lys.  相似文献   

15.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

16.
N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.  相似文献   

17.
Summary A restriction fragment enrichment procedure was devised for the identification and cloning of the gene for protein synthesis elongation factor Tu (EF-Tu) from Methanococcus vannielii, employing hybridisation with an internal tufB gene probe from Escherichia coli. Methanococcus contains a single tuf gene on its chromosome; it is expressed in E. coli and it codes for a polypeptide of 46.5 kDa. The overall architecture of the protein bears a striking resemblance to that of eukaryotic elongation factor 1 (EF-1). The close similarity to EF-1 is supported by the sequence homology values which are in the range of 34% to 35% with eubacterial, plastid and mitochondrial EF-Tu sequences and as high as 52% to 54% with those from eukaryotic EF-1.  相似文献   

18.
Summary EcoRI fragments of the transducing phage fus3 DNA have been linked to the ColEl derivative plasmid RSF2124 (ColEl-Apr) DNA using bacteriophage T4 ligase. Among the plasmids formed, one designated pTUAl was found to contain the E. coli tufA gene. The proof for the presence of tufA gene in pTUAl is based on the following observations: (1) ability of pTUAl DNA and its EcoRI fragments to direct synthesis of EF-Tu in a cell-free protein synthesizing system; and (2) RNA·DNA hybridization of RNA transcribed from phage rif d18 carrying tufB with DNA from pTUAl.  相似文献   

19.
Summary The nature and extent of DNA sequence divergence between homologous proteincoding genes fromEscherichia coli andSalmonella typhimurium have been examined. The degree of divergence varies greatly among genes at both synonymous (silent) and nonsynonymous sites. Much of the variation in silent substitution rates can be explained by natural selection on synonymous codon usage, varying in intensity with gene expression level. Silent substitution rates also vary significantly with chromosomal location, with genes nearoriC having lower divergence. Certain genes have been examined in more detail. In particular, the duplicate genes encoding elongation factor Tu,tufA andtufB, fromS. typhimurium have been compared to theirE. coli homologues. As expected these very highly expressed genes have high codon usage bias and have diverged very little between the two species. Interestingly, these genes, which are widely spaced on the bacterial chromosome, also appear to be undergoing concerted evolution, i.e., there has been exchange between the loci subsequent to the divergence of the two species.Presented at the NATO Advanced Research Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号