首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetolactate synthase (ALS) catalyzes the first committed step in the synthesis of branched-chain amino acids. In green plants and fungi, ALS is encoded by a nuclear gene whose product is targeted to plastids (in plants) or to mitochondria (in fungi). In red algae, the gene is plastid-encoded. We have determined the complete sequence of nucleus-encoded ALS genes from the green algae Chlamydomonas reinhardtii and Volvox carteri. Phylogenetic analyses of the ALS gene family indicate that the ALS genes of green algae and plants are closely related, sharing a recent common ancestor. Furthermore, although these genes are clearly of eubacterial origin, a relationship to the ALS genes of red algae and cyanobacteria (endosymbiotic precursors of plastids) is only weakly indicated. The algal ALS genes are distinguished from their homologs in higher plants by the fact that they are interrupted by numerous spliceosomal introns; plant ALS genes completely lack introns. The restricted phylogenetic distribution of these introns suggests that they were inserted recently, after the divergence of these green algae from plants. Two introns in the Volvox ALS gene, not found in the Chlamydomonas gene, are positioned precisely at sites which resemble “proto-splice” sequences in the Chlamydomonas gene. Received: 27 November 1998 / Accepted: 21 April 1999  相似文献   

2.
3.
4.
Summary Ribulose bisphosphate carboxylase-oxygenase (Rubisco) is a key enzyme in the photosynthetic fixation of CO2 by the chloroplast. The synthesis of the enzyme is an example of the cooperation between the chloroplast and the nucleocytoplasmic compartments, as it is assembled from subunits encoded in the two respective genomes. I have used a synthetic oligonucleotide probe to isolate the nuclear Rubisco small subunit genes (rbcS) directly from a genomic library of Chlamydomonas reinhardtii DNA. They constitute only a small family: there are two rbcS genes, and an additional related sequence, in the C. reinhardtii genome. All three are clustered within 11kb at a single locus, and should thus be particularly well suited for genetic manipulation. The pattern of expression of rbcS RNA is dependent on the growth conditions.  相似文献   

5.
Plastids are the organelles of plants and algae that house photosynthesis and many other biochemical pathways. Plastids contain a small genome, but most of their proteins are encoded in the nucleus and posttranslationally targeted to the organelle. When plants and algae lose photosynthesis, they virtually always retain a highly reduced "cryptic" plastid. Cryptic plastids are known to exist in many organisms, although their metabolic functions are seldom understood. The best-studied example of a cryptic plastid is from the intracellular malaria parasite, Plasmodium, which has retained a plastid for the biosynthesis of fatty acids, isoprenoids, and heme by the use of plastid-targeted enzymes. To study a completely independent transformation of a photosynthetic plastid to a cryptic plastid in another alga-turned-parasite, we conducted an expressed sequence tag (EST) survey of Helicosporidium. This parasite has recently been recognized as a highly derived green alga. Based on phylogenetic relationships to other plastid homologues and the presence of N-terminal transit peptides, we have identified 20 putatively plastid-targeted enzymes that are involved in a wide variety of metabolic pathways. Overall, the metabolic diversity of the Helicosporidium cryptic plastid exceeds that of the Plasmodium plastid, as it includes representatives of most of the pathways known to operate in the Plasmodium plastid as well as many others. In particular, several amino acid biosynthetic pathways have been retained, including the leucine biosynthesis pathway, which was only recently recognized in plant plastids. These two parasites represent different evolutionary trajectories in plastid metabolic adaptation.  相似文献   

6.
Two Volvox genomic clones each containing a pair of histone H3-H4 genes were sequenced. In both loci the H3 and H4 genes show outwardly divergent polarity, their coding regions being separated by short intercistronic sequences containing TATA boxes and a conserved 14-bp element. The 3' untranslated regions contain a characteristic motif with hyphenated dyad symmetry otherwise only found associated with animal histone genes. Derived amino acid sequences of histones H3 and H4 are highly conserved and identical between the two sets. The Volvox H3 genes both contain one intron whose relative position is shifted by one basepair. Sequence comparisons led to a new interpretation of intron sliding. The Volvox H3 gene structure combines the exon-intron organization of fungal H3 and vertebrate H3.3 genes with a termination signal typical for animal H3.1 genes. These features are discussed in view of histone gene evolution.  相似文献   

7.
Flow cytometry is a valuable tool in phycological studies. However, endogenous cellular compounds like nicotinamide adenine dinucleotide and chlorophyll a and b autofluoresce, potentially interfering with fluorescent markers. Furthermore, autofluorescent properties are not uniform across algae, nor are their effects consistent in different cytometers. The choice of instrument and fluorescent marker, therefore, requires careful consideration. We investigated the suitability of fluorescent markers by using standard four-colour and advanced multicolour flow cytometers in relation to the effects of autofluorescence over ranges of parameters including fluorophore excitation and emission spectra, band-pass filter configurations, voltage gains and the effects of growth in the light and dark. The unicellular chlorophyte and model organism, Chlamydomonas reinhardtii, was used and findings were correlated with investigations of programmed cell death. As previously found C. reinhardtii autofluoresces in the red, far-red and infrared spectra. This is independent of laser excitation wavelength, and autofluorescence emits and spills over into detection channels of both four-colour and multicolour instruments. Band-pass filter configurations capturing longer wavelength emissions or fluorophores excited or emitted in these longer wavelengths are generally unsuitable. Furthermore, neither dark nor light incubation impacted the autofluorescent signals. Consideration of these algal autofluorescent properties and their spillover effects is required to avoid erroneous results. Recommendations for the use of a range of fluorophores in programmed cell death and other studies in C. reinhardtii using four-colour and multicolour instruments are made.  相似文献   

8.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

9.
Gametic differentiation in Chlamydomonas reinhardtii is a two-step process, which is controlled by the sequential action of the two extrinsic signals, nitrogen starvation and blue light. The gamete-specific genes GAS28 and GAS29 are expressed in the late phase of gametogenesis. Their light-induced expression is restricted to cells that have completed the first, nitrogen starvation-activated, phase of differentiation. A comparison of the two genes revealed striking similarities as well as differences. Their most prominent shared feature is an extended sequence homology of over 90% in their 5′-untranslated regions, suggesting a role in translational regulation. GAS28 and GAS29 both encode hydroxyproline-rich proteins (HRGPs) of very similar sizes that exhibit typical features of volvocalean cell wall constituents. GAS28 shows a high degree of homology with the Volvox pherophorin gene family, suggesting a relationship between these genes. Received: 6 August 1998 / Accepted: 16 November 1998  相似文献   

10.
We have used restriction fragment differential display for isolating genes of the unicellular green alga Chlamydomonas reinhardtii that exhibit elevated expression on exposure of cells to high light. Some of the high light-activated genes were also controlled by CO2 concentration. Genes requiring both elevated light and low CO2 levels for activation encoded both novel polypeptides and those that function in concentrating inorganic carbon (extracellular carbonic anhydrase, low CO2-induced protein, ABC transporter of the MRP subfamily). All the genes in this category were shown to be under the control of Cia5, a protein that regulates the responses of C. reinhardtii to low-CO2 conditions. Genes specifically activated by high light, even under high-CO2 conditions, encoded a 30 kDa chloroplast membrane protein, a serine hydroxymethyltransferase, a nuclease, and two proteins of unknown function. Experiments using DCMU, an inhibitor of photosynthetic electron transport, and mutants devoid of either photosystem I or photosystem II activity, showed aberrant expression of all the genes regulated by both CO2 and high light, suggesting that redox plays a role in controlling their expression. In contrast, there was little effect of DCMU or lesions that block photosynthetic electron transport on the activity of genes that were specifically controlled by high light.  相似文献   

11.
12.
Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA was isolated that recognized specifically the Sec codon UGA. Subsequent gene cloning and bioinformatics analyses identified eight additional selenoproteins, including methionine-S-sulfoxide reductase, a selenoprotein specific to Chlamydomonas: Chlamydomonas selenoprotein genes contained selenocysteine insertion sequence (SECIS) elements that were similar, but not identical, to those of animals. These SECIS elements could direct selenoprotein synthesis in mammalian cells, indicating a common origin of plant and animal Sec insertion systems. We found that selenium is required for optimal growth of Chlamydomonas: Finally, evolutionary analyses suggested that selenoproteins present in Chlamydomonas and animals evolved early, and were independently lost in land plants, yeast and some animals.  相似文献   

13.
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.  相似文献   

14.
15.
16.
Lipid metabolism in flowering plants has been intensely studied, and knowledge regarding the identities of genes encoding components of the major fatty acid and membrane lipid biosynthetic pathways is very extensive. We now present an in silico analysis of fatty acid and glycerolipid metabolism in an algal model, enabled by the recent availability of expressed sequence tag and genomic sequences of Chlamydomonas reinhardtii. Genes encoding proteins involved in membrane biogenesis were predicted on the basis of similarity to proteins with confirmed functions and were organized so as to reconstruct the major pathways of glycerolipid synthesis in Chlamydomonas. This analysis accounts for the majority of genes predicted to encode enzymes involved in anabolic reactions of membrane lipid biosynthesis and compares and contrasts these pathways in Chlamydomonas and flowering plants. As an important result of the bioinformatics analysis, we identified and isolated the C. reinhardtii BTA1 (BTA1Cr) gene and analyzed the bifunctional protein that it encodes; we predicted this protein to be sufficient for the synthesis of the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), a major membrane component in Chlamydomonas. Heterologous expression of BTA1Cr led to DGTS accumulation in Escherichia coli, which normally lacks this lipid, and allowed in vitro analysis of the enzymatic properties of BTA1Cr. In contrast, in the bacterium Rhodobacter sphaeroides, two separate proteins, BtaARs and BtaBRs, are required for the biosynthesis of DGTS. Site-directed mutagenesis of the active sites of the two domains of BTA1Cr allowed us to study their activities separately, demonstrating directly their functional homology to the bacterial orthologs BtaARs and BtaBRs.  相似文献   

17.
Mazur BJ  Chui CF  Smith JK 《Plant physiology》1987,85(4):1110-1117
Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathways to valine, isoleucine, and leucine. It is the target of two structurally unrelated classes of herbicides, the sulfonylureas and the imidazolinones. Genomic clones encoding ALS have been isolated from the higher plants Arabidopsis thaliana and Nicotiana tabacum, using a yeast ALS gene as a heterologous hybridization probe. Clones were positively identified by the homology of their deduced amino acid sequences with those of yeast and bacterial ALS isozymes. The tobacco and Arabidopsis ALS genes have approximately 70% nucleotide homology, and encode mature proteins which are approximately 85% homologous. Little homology is seen between the amino acid sequences of the presumptive N-terminal chloroplast transit peptides. Both plant genes lack introns. The tobacco ALS gene was isolated from a line of tobacco which is resistant to the sulfonylurea herbicides due to an alteration in ALS. The tobacco gene which was isolated codes for an ALS that is sensitive to the herbicides, as assayed by transformation of the gene into sensitive tobacco cells.  相似文献   

18.
The sexual inducer of Volvox carteri f. nagariensis is a glycoprotein and one of the most potent biological effector molecules known. It is synthesized by sperm cells and converts asexually growing males and females to the sexual pathway. Until now, large-scale production of the inducer was made impossible by an inherent biological `switch' mechanism, the spontaneous self-induction of asexually growing males. Here we describe a method overcoming this problem for the first time. Large-scale production and purification allowed a detailed chemical characterization of the inducer with respect to partial amino acid sequences and sugar composition. Chemically synthesized oligodeoxynucleotides corresponding to derived amino acid sequences were used to screen a genomic gene bank of V. carteri HK 10. A positive clone (Ind-28) was shown to encode the inducer gene by subcloning and sequencing.  相似文献   

19.
20.
Genomic and cDNA clones of the acetolactate synthase (ALS) gene of Chlamydomonas reinhardtii have been isolated from a mutant, c85-20 (Hartnett et al., 1987), that is resistant to high concentrations of sulfometuron methyl (SMM) and related sulfonylurea herbicides. Comparison of the ALS gene sequences from the wild-type and the SMM resistant (SMMr) strains revealed two amino acid differences in the mature enzyme, a lysine to threonine change at position 257 (K257T) and a leucine to valine change at position 294 (L294V). Transformation of wild-type C. reinhardtii with the mutant ALS gene produced no transformants with ability to grow in the presence of a minimum toxic concentration of SMM (3 microm). Substitution of the ALS promoter with the promoter of the C. reinhardtii Rubisco small subunit gene (RbcS2) permitted recovery of SMMr colonies. In vitro mutagenesis of the wild-type ALS gene to produce various combinations of mutations (K257T, L294V and W580L) indicated that the K257T mutation was necessary and sufficient to confer the SMMr phenotype. Optimum transformation rates were obtained with two constructs (pJK7 and pRP-ALS) in which all introns in the coding region were present. Rates of transformation with construct pJK7 were approximately 2.5 x 10-4 transformants/cell (i.e. one transformant for each of 4000 initial cells) using electroporation and 8.5 x 10-6 transformants/cell using the glass bead vortexing method. These results suggest that pJK7 and pRP-ALS can serve as important additional dominant selectable markers for the genetic transformation of C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号