首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to identify proteins involved in the translocation step of protein secretion, a genetic screen was carried out in the yeast Yarrowia lipolytica. A conditional lethal mutant which has a defect in the 7S RNA of the signal recognition particle was mutagenized and screened for second-site mutations that specifically exacerbate its temperature sensitivity. This approach had previously allowed the characterization of an endoplasmic reticulum component, Sls1p, involved in protein translocation. A second mutation, sls2-1, was isolated that causes synthetic lethality when combined with the 7S RNA mutation. On its own, the sls2-1 mutation confers a temperature-sensitive growth phenotype. The secretory phenotype of the sls2 mutant consists in abnormal secretion of several polypeptides, and thus differs from the defect in secretory protein synthesis associated with the 7S RNA and sls1-1 mutations. Two new Y. lipolytica genes were identified which can relieve the growth defect of sls2-1 cells: SLS2 itself and SSL2, a multicopy suppressor of the temperature sensitivity of the sls2 mutant. The SLS2 gene encodes a polypeptide that can potentially be farnesylated and phosphorylated, and shares some homology with an S. cerevisiae protein of unknown function. Ssl2p resembles calmodulin-dependent serine/threonine protein kinases. These two proteins may interact to regulate protein sorting. Received: 9 June 1998 / Accepted: 10 February 1999  相似文献   

2.
3.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative α-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro α-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with α-1,2- and α-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first α-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

4.
The Yarrowia lipolytica PMR1 gene (YlPMR1) is a Saccharomyces cerevisiae PMR1 homolog which encodes a putative secretory pathway Ca2+-ATPase. In this study, we investigated the effects of a YlPMR1 disruption on the processing and secretion of native and foreign proteins in Y. lipolytica and found variable responses by the YlPMR1-disrupted mutant depending on the protein. The secretion of 32-kDa mature alkaline extracellular protease (AEP) was dramatically decreased, and incompletely processed precursors were observed in the YlPMR1-disrupted mutant. A 36- and a 52-kDa premature AEP were secreted, and an intracellular 52-kDa premature AEP was also detected. The acid extracellular protease activity of the YlPMR1-disrupted mutant was increased by 60% compared to that of the wild-type strain. The inhibitory effect of mutations in secretory pathway Ca2+-ATPase genes on the secretion of rice α-amylase was also observed in the Y. lipolytica and S. cerevisiae PMR1-disrupted mutants. Unlike rice α-amylase, the secretion of Trichoderma reesei endoglucanase I (EGI) was not influenced by the YlPMR1 disruption. However, the secreted EGI from the YlPMR1-disrupted mutant had different characteristics than that of the control. While wild-type cells secreted the hyperglycosylated form of EGI, hyperglycosylation was completely absent in the YlPMR1-disrupted mutant. Our results indicate that the effects of the YlPMR1 disruption as manifested by the phenotypic response depend on the characteristics of the reporter protein in the recombinant yeast strain evaluated.  相似文献   

5.
《Gene》1997,203(1):75-84
The signal recognition particle (SRP) is a ribonucleoprotein composed of a 7SL RNA and six polypeptides. Here we report the results of a series of experiments carried out to define the function of the Yarrowia lipolytica homologue of the 19 kDa subunit of mammalian SRP. The YlSEC65 gene product is a 310 amino acid protein. Coimmuneprecipitation of Sec65p and 7SL RNA in Y. lipolytica revealed that these components are stable associated in a complex. Deletion of the YlSEC65 gene is lethal, in contrast with the results described for the Saccharomyces cerevisiae SEC65 gene, which is not essential for cell growth and whose deletion results in slowly growing strains. Using site-directed mutagenesis we demonstrate that the two arginine residues of the EGRR motif conserved in all SRP19 homologues are essential for SRP activity. By random mutagenesis of YlSEC65, we have isolated a temperature-sensitive mutant and shown that it was affected in protein secretion at the non-permissive temperature. We also show that the YlSEC65 gene is able to functionally complement the temperature-sensitive growth of S. cerevisiae sec65 mutants. Our results suggest that SRP-dependent targeting may be the main secretory pathway in Y. lipolytica, as has been described for higher eukaryotes.  相似文献   

6.
Summary The three yolk proteins (YP1, YP2 and YP3) of Drosophila melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated in the developing oocytes to provide a nutrient source for embryogenesis. We have described the phenotype of a temperaturesensitive female-sterile mutant, fs(1) K313, and characterised its yolk proteins. This mutation affects the secretion of YP2 and is the first mutation affecting YP2 to be described. Using genetic and molecular tests we argue that the female-sterile phenotype results, at least in part, from the abnormal secretion of YP2 perturbing the follicle cell secretory pathway in general and thus causing defects in chorion protein secretion. The gene coding for YP2 in fs (1) K313 has been cloned and sequenced. Two amino acid substitutions have been found which probably cause the abnormal secretion of YP2 and the resulting female-sterile phenotype.  相似文献   

7.
Oleaginous microorganisms are characterized by their ability to store high amounts of triacylglycerol (TAG) in intracellular lipid droplets (LDs). In this work, we characterized a protein of the oleaginous yeast Yarrowia lipolytica that is associated with LD and plays a role in the regulation of TAG storage. This protein is required for the oleaginous phenotype of Y. lipolytica because deletion of the coding gene results in a strongly reduced TAG content of the mutant. Therefore, we named it Oleaginicity Inducing LD protein, Oil1. Furthermore, a mutant overexpressing OIL1 accumulates more TAG than the wild type and is delayed in TAG lipolysis when this process is stimulated. We found that Oil1p plays a role in protecting the TAG content of the LD from degradation through lipases under conditions where the cell aims at building up its TAG reserves. Heterologous expression studies showed that Oil1p rescued the phenotype of a Saccharomyces cerevisiae mutant deleted for the perilipin-like protein Pln1p and that its expression in COS-7 cells resulted in increased TAG accumulation, similar to the phenotype of a perilipin 1 expressing control strain. Despite this phenotypical parallels to mammalian perilipins, Oil1p is not a member of this protein family and its activity does not depend on phosphorylation. Rather, our results suggest that ubiquitination might contribute to the function of Oil1p in Y. lipolytica and that a different mechanism evolved in this species to regulate TAG homeostasis.  相似文献   

8.
9.
Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.  相似文献   

10.
《The Journal of cell biology》1995,131(5):1163-1171
To clarify the roles of Kar2p (BiP) and Sec63p in translocation across the ER membrane in Saccharomyces cerevisiae, we have utilized mutant alleles of the essential genes that encode these proteins: kar2-203 and sec63-1. Sanders et al. (Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 1992. Cell. 69:353-365) showed that the translocation defect of the kar2-203 mutant lies in the inability of the precursor protein to complete its transit across the membrane, suggesting that the lumenal hsp70 homologue Kar2p (BiP) binds the transiting polypeptide in order to facilitate its passage through the pore. We now show that mutation of a conserved residue (A181-->T) (Nelson, M. K., T. Kurihara, and P. Silver. 1993. Genetics. 134:159- 173) in the lumenal DnaJ box of Sec63p (sec63-1) results in an in vitro phenotype that mimics the precursor stalling defect of kar2-203. We demonstrate by several criteria that this phenotype results specifically from a defect in the lumenal interaction between Sec63p and BiP: Neither a sec62-1 mutant nor a mutation in the cytosolically exposed domain of Sec63p causes precursor stalling, and interaction of the sec63-1 mutant with the membranebound components of the translocation apparatus is unimpaired. Additionally, dominant KAR2 suppressors of sec63-1 partially relieve the stalling defect. Thus, proper interaction between BiP and Sec63p is necessary to allow the precursor polypeptide to complete its transit across the membrane.  相似文献   

11.
The 19S regulatory particle of the yeast 26S proteasome consists of six related ATPases (Rpt proteins) and at least 11 non-ATPase proteins (Rpn proteins). RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth. To determine which subunit(s) of the 26S proteasome interact(s) with Rpn12, we attempted to screen for mutations that cause synthetic lethality in the presence of the rpn12-1 (formerly nin1-1) mutation. Among the candidates recovered was a new allele of RPT1 (formerly CIM5). This mutant allele was designated rpt1-2; on its own this mutation caused no phenotypic change, whereas the rpn12-1 rpt1-2 double mutant was lethal, suggesting a strong interaction between Rpn12 and Rpt1. The site of the rpt1-2 mutation was determined by DNA sequencing of the RPT1 locus retrieved from the mutant, and a single nucleotide alteration was found. This changes amino acid 446 of the RPT1 product from alanine to valine. The alanine residue is conserved in all Rpt proteins, except Rpt5, but no function has yet been assigned to the region that contains it. We propose that this region is necessary for Rpt1 to interact with Rpn12. The terminal phenotype of the rpn12-1 rpt1-2 double mutant was not cell cycle specific, suggesting that in the double mutant cells the function of the 26S proteasome is completely eliminated, thereby inducing multiple defects in cellular functions.  相似文献   

12.
Biochemical and physiological studies have implicated cAMP and cAMP-dependent protein kinase (PKA) in a plethora of essential cellular processes. Here we show that yeast cells partially depleted of PKA activity (due to atpk w mutation) and bearing a lesion in a Golgi-localized Ca2+ pump (Pmr1), arrest division with a small bud. The bud morphology of the arrestedtpk1 w pmr1 mutant cells is characteristic of cells in S phase; however, the terminal phenotype of processes such as DNA replication and nuclear division suggests arrest at the G2/M boundary. This small bud, G2-arrest phenotype is similar to that of strains with a defect in cell wall biosynthesis (pkc1) or membrane biogenesis (och1); however, the biochemical defect may be different since thetpk1 w pmr1 double mutants retain viability. The growth defect of thetpk1 w pmr1 mutant can be alleviated by preventing the increase in cellular cAMP levels that is known to be associated with a decrease in PKA activity, or by supplementing the medium with millimolar amounts of Ca2+. Although the biochemical consequences of this increase in cAMP concentration are not known, the small-bud phenotype of the double mutant and the known protein processing defect of thepmr1 lesion suggest that the localization or function of some membrane component might be compromised and susceptible to perturbations in cellular cAMP levels. One candidate for such a protein is the cAMP-binding membrane ectoprotein recently described in yeast.  相似文献   

13.
Spermiogenesis is a complex process that is regulated by a plethora of genes and interactions between germ and somatic cells. Here we report a novel mutant mouse strain that carries a transgene insertional/translocational mutation and exhibits dominant male sterility. We named the mutation dominant spermiogenesis defect (Dspd). In the testes of Dspd mutant mice, spermatids detached from the seminiferous epithelium at different steps of the differentiation process before the completion of spermiogenesis. Microinsemination using spermatids collected from the mutant testes resulted in the birth of normal offspring. These observations indicate that the major cause of Dspd infertility is (are) a defect(s) in the Sertoli cell-spermatid interaction or communication in the seminiferous tubules. Fluorescent in situ hybridization (FISH) analysis revealed a translocation between chromosomes 7F and 14C at the transgene insertion site. The deletion of a genomic region of chromosome 7F greater than 1 megabase and containing at least six genes (Cttn, Fadd, Fgf3, Fgf4, Fgf15, and Ccnd1) was associated with the translocation. Cttn encodes the actin-binding protein cortactin. Immunohistochemical analysis revealed localization of cortactin beside elongated spermatids in wild-type testes; abnormality of cortactin localization was found in mutant testes. These data suggest an important role of cortactin in Sertoli cell-spermatid interactions and in the Dspd phenotype.  相似文献   

14.
Small GTPases of the Ypt/rab family are involved in the regulation of vesicular transport. These GTPases apparently function during the targeting of vesicles to the acceptor compartment. Two members of the Ypt/rab family, Ypt1p and Sec4p, have been shown to regulate early and late steps of the yeast exocytic pathway, respectively. Here we tested the role of two newly identified GTPases, Ypt31p and Ypt32p. These two proteins share 81% identity and 90% similarity, and belong to the same protein subfamily as Ypt1p and Sec4p. Yeast cells can tolerate deletion of either the YPT31 or the YPT32 gene, but not both. These observations suggest that Ypt31p and Ypt32p perform identical or overlapping functions. Cells deleted for the YPT31 gene and carrying a conditional ypt32 mutation exhibit protein transport defects in the late exocytic pathway, but not in vacuolar protein sorting. The ypt31/ 32 mutant secretory defect is clearly downstream from that displayed by a ypt1 mutant and is similar to that of sec4 mutant cells. However, electron microscopy revealed that while sec4 mutant cells accumulate secretory vesicles, ypt31/32 mutant cells accumulate aberrant Golgi structures. The ypt31/32 phenotype is epistatic to that of a sec1 mutant, which accumulates secretory vesicles. Together, these results indicate that the Ypt31/32p GTPases are required for a step that occurs in the transGolgi compartment, between the reactions regulated by Ypt1p and Sec4p. This step might involve budding of vesicles from the trans-Golgi. Alternatively, Ypt31/ 32p might promote secretion indirectly, by allowing fusion of recycling vesicles with the trans-Golgi compartment.  相似文献   

15.
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.  相似文献   

16.
Arabidopsis (Arabidopsis thaliana) leaves possess a mechanism that couples the rate of nighttime starch degradation to the anticipated time of dawn, thus preventing premature exhaustion of starch and nighttime starvation. To shed light on the mechanism, we screened a mutagenized population of a starvation reporter line and isolated a mutant that starved prior to dawn. The mutant had accelerated starch degradation, and the rate was not adjusted to time of dawn. The mutation responsible led to a single amino acid change (S132N) in the starch degradation enzyme BETA-AMYLASE1 (BAM1; mutant allele named bam1-2D), resulting in a dominant, gain-of-function phenotype. Complete loss of BAM1 (in bam1-1) did not affect rates of starch degradation, while expression of BAM1(S132N) in bam1-1 recapitulated the accelerated starch degradation phenotype of bam1-2D. In vitro analysis of recombinant BAM1 and BAM1(S132N) proteins revealed no differences in kinetic or stability properties, but in leaf extracts, BAM1(S132N) apparently had a higher affinity than BAM1 for an established binding partner required for normal rates of starch degradation, LIKE SEX FOUR1 (LSF1). Genetic approaches showed that BAM1(S132N) itself is likely responsible for accelerated starch degradation in bam1-2D and that this activity requires LSF1. Analysis of plants expressing BAM1 with alanine or aspartate rather than serine at position 132 indicated that the gain-of-function phenotype is not related to phosphorylation status at this position. Our results strengthen the view that control of starch degradation in wild-type plants involves dynamic physical interactions of degradative enzymes and related proteins with a central role for complexes containing LSF1.

A single amino acid change in Arabidopsis BETA-AMYLASE1 prevents coupling of night-time starch degradation to time of dawn and causes premature exhaustion of starch reserves in the dark.  相似文献   

17.
prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13+ gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4+ gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.  相似文献   

18.
19.
In a search for proteins associated with Rna15p in processing the 3′ ends of messenger RNAs, we have looked for suppressors that correct, even partially, the thermosensitive growth defect of therna15-2 mutant. Mutations in a single locus that we namedSSM5, were able to suppress both the thermosensitivity of cell growth and the mRNA 3′ processing defect associated with therna15-2 mutation, but only slightly alleviated the thermosensitive growth defect of anrna14-1 mutant. Thessm5-1 mutant is sensitive to hydroxyurea at 37° C, a drug that inhibits DNA synthesis. By screening for complementation of the hydroxyurea-sensitive phenotype we cloned the corresponding wild-type gene and found that it corresponds to the essential geneSTS1 (also namedDBF8). Sts1p has an apparent molecular weight of 30 kDa and was confirmed to be a cytosolic protein by immunofluorescence analysis. Western blot analysis indicates that the thermosensitive mutant strainsrna15-2, rna14-1 andpap1-1 present a very low level of the Rna15p at 37° C. Thessm5-1 mutation restores the level of Rna15p in therna15-2 ssm5-1 double mutant. Use of the two-hybrid system suggests that Sts1p does not interact directly with Rna15p, but may be active as a homodimer. The present data suggest that Sts1p may play a role in the transport of Rna15p from the cytoplasm to the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号