首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus nidulans reproduces asexually via uninucleate, haploid spores, which are produced on morphologically differentiated aerial structures, called conidiophores. These consist of four distinct cell types, a foot with a terminally swollen stalk, metulae, phialides and conidiospores. The molecular mechanisms underlying the morphological changes that occur during conidiophore development have been studied by mutant analysis. We have isolated the hymA mutant, in which conidiophore development is affected at the metula stage. In the mutant metulae do not differentiate properly but come to resemble hyphae (hym = hypha-like metulae). In this paper we have analyzed the corresponding gene. It encodes a highly expressed 44 kDa protein which resides in the cytoplasm and has homologues in yeast, plants, fly, worm, fish, mice and man. We constructed hym deletion strains of Saccharomyces cerevisiae and of A. nidulans and found that the gene is essential in S. cerevisiae but is dispensable in the filamentous fungus. A cellular function for the Hym protein has not yet been defined in any organism. To demonstrate functional conservation we constructed a chimeric protein comprised of the N-terminal half of the A.␣nidulans and the C-terminal half of the mouse homologue MO25. This hybrid protein could fully substitute for HymA function in A. nidulans. In addition, the mouse protein itself partially rescued the hymA mutation in the fungus. HymA is thus highly conserved in evolution and probably serves similar functions. The fact that hymA is required for conidiophore development in A. nidulans suggests that homologous genes in other organisms might also be involved in morphogenesis. Received: 11 February 1998 / Accepted: 14 September 1998  相似文献   

2.
Calcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. In Saccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 from S. cerevisiae, was functionally characterized in the filamentous fungus Aspergillus nidulans. Loss of figA resulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACS midA. Interestingly, in a figA deletion mutant, adding extracellular Ca2+ rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed that figA deletion sharply decreased the expression of brlA and nsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system in A. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.  相似文献   

3.
Aspergillus nidulans reproduces asexually by forming thousands of mitotically derived spores atop highly specialized multicellular organs termed conidiophores. We have identified a gene called flbA (for fluffy low brlA expression) that is required for initiation of A. nidulans conidiophore development. flbA mutants form abnormal colonies that have a distinct fluffy phenotype characterized by tightly interwoven aerial hyphae that autolyse as the colony matures. The requirement for fIbA in conidiophore development precedes activation of brlA, a primary regulator of conidiophore development. The wild-type flbA gene was isolated and found to encode a 3.0 kb mRNA that is expressed throughout the A. nidulans asexual life cycle. Overexpression of fIbA using an Inducible promoter resulted in misscheduled expression of brlA in vegetative ceils and caused hyphal tips to differentiate into spore-producing structures. Sequence analysis of a nearly full-length fIbA cDNA clone showed that fibA is predicted to encode a 717-amino-acid polypeptide with 30% identity to the Saccharomyces cerevisiae SST2 protein. SST2 is required by yeast cells for resuming growth following prolonged exposure to yeast mating pheromone and for mating partner discrimination. We propose that fIbA plays a related role in a signalling pathway for Aspergillus conidiophore development.  相似文献   

4.
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.  相似文献   

5.
An ivo B mutant of Aspergillus nidulans, deficient in conidiophore pigment has been shown to accumulate N-acetyl-6-hydroxytryptophan. This substrate for a specific monophenol oxidase present in the wild type but absent in the mutant.  相似文献   

6.
abaA controls phialide differentiation in Aspergillus nidulans.   总被引:4,自引:1,他引:4       下载免费PDF全文
Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. Loss of function mutations in the abacus A (abaA) regulatory locus result in formation of aberrant conidiophores that fail to produce conidia. Wild-type conidiophores form two tiers of sterigmata. The first tier, metulae, divide to produce the second tier, phialides. Phialides are sporogenous cells that produce conidia through a specialized apical budding process. We have examined conidiophore development in an abaA- strain at the ultrastructural level. The results showed that in the mutant metulae produce supernumerary tiers of cells with metula-like, rather than phialide-like, properties. Temperature shift experiments with an abaA14ts strain demonstrated that abaA+ function induced phialide formation by the aberrant abacus cells and was continuously required for maintenance of phialide function. In the absence of abaA+ activity, metulae simply proliferated and later developmental steps never occurred. We conclude that abaA+ directs the differentiation of phialides and is continuously required for maintenance of their function.  相似文献   

7.
《Experimental mycology》1990,14(3):290-293
ThebrlA andabaA genes ofAspergillus nidulans regulate stages of conidiophore development and are themselves regulated during development.brlA mutants produce conidiophore stalks devoid of vesicles, sterigmata, and spores.abaA mutants produce most of the conidiophore structures but fail to form conidia. To assess the spatial expression of these two genes, we fused the 5′ flanking region ofbrlA orabaA to theEscherichia coli lacZ gene.A. nidulans transformants with a single copy of either fusion gene integrated at a defined heterologus locus (argB) expressedβ-galactosidase during conidiophore development, parallelingbrlA andabaA mRNA accumulation. Controls lacking the fusion genes produced little or noβ-galactosidase activity. A method forin situ detection ofβ-galactosidase was devised. Hyphae or conidiophores were permeabilized by treatment with chloroform vapors and stained with 5-bromo-4-chloroindolyl-β-d-galactoside.β-Galactosidase activity was detected in specific conidiophore cell types.brlA- andabaA-directedβ-galactosidase accumulated in vesicles, sterigmata, and immature conidia. This procedure should be applicable for determining cellular specificities of gene expression in fungi for which transformation systems exist.  相似文献   

8.
9.
The morphology of four productive strains ofPenicillium chrysogenum Thom from the Wisconsin family was studied. The strains Q-176, 47–1564, 49–133, 51–20Z, which were naturally or artificially obtained mutants of thePenicillium chrysogenum NRRL 1951 strain were very variable as to the colony structure and the character of conidiophores. The present study is concerned with the evaluation of their taxonomic position. The macrohabitus of the colonies was not remarkably changed. All different types of colonies (U, D, C, B, rarely A) described by Backus and Stauffer, were found on Czapek agar; they were not recognized on malt agar. Deviations from the normal asymmetric conidiophore were found with every type of colonies, most often with the more floccose or lanose ones showing a higher and a sparser overgrowth. These deviations or changes in the microstructure were divided into three degrees according to their quality and occurrence: (1) A strongly divaricate conidiophore where only metulae and phialides were developed; (2) monoverticilate conidiophore or single phialides on the conidiophore filament; (3) degeneration of phialides or metulae to sterile globose cells or an ultimate reduction of conidiophore to dichotomically branched stump-like hypha. The investigated strains can be involved in the taxonPenicillium chrysogenum Thom; it is necessary, however, to include some additional traits into the characteristics of the taxon: Colonies of the naturally or artificially obtained mutants often have lanose overgrowths sporulating sparsely. Formation of the yellow pigment and the exudate was not obligatory. conidiophores of these strains had a tendency to be more simple. They were scarcer, divaricately open, characterized sometimes by the formation of monoverticilate penicilli. A degeneration was frequently found of the ends of conidiophores (phialides and metulae) to globose enlarged sterile cells as well as the formation of giant cells in the mycelium or reduction of conidiophore to dichotomically branched hypha with stump-like ends.  相似文献   

10.
11.
We cloned and characterized a novel Aspergillus nidulans histidine kinase gene, tcsB, encoding a membrane-type two-component signaling protein homologous to the yeast osmosensor synthetic lethal N-end rule protein 1 (SLN1), which transmits signals through the high-osmolarity glycerol response 1 (HOG1) mitogen-activated protein kinase (MAPK) cascade in yeast cells in response to environmental osmotic stimuli. From an A. nidulans cDNA library, we isolated a positive clone containing a 3,210-bp open reading frame that encoded a putative protein consisting of 1,070 amino acids. The predicted tcsB protein (TcsB) has two probable transmembrane regions in its N-terminal half and has a high degree of structural similarity to yeast Sln1p, a transmembrane hybrid-type histidine kinase. Overexpression of the tcsB cDNA suppressed the lethality of a temperature-sensitive osmosensing-defective sln1-ts yeast mutant. However, tcsB cDNAs in which the conserved phosphorylation site His552 residue or the phosphorelay site Asp989 residue had been replaced failed to complement the sln1-ts mutant. In addition, introduction of the tcsB cDNA into an sln1Δ sho1Δ yeast double mutant, which lacked two osmosensors, suppressed lethality in high-salinity media and activated the HOG1 MAPK. These results imply that TcsB functions as an osmosensor histidine kinase. We constructed an A. nidulans strain lacking the tcsB gene (tcsBΔ) and examined its phenotype. However, unexpectedly, the tcsBΔ strain did not exhibit a detectable phenotype for either hyphal development or morphology on standard or stress media. Our results suggest that A. nidulans has more complex and robust osmoregulatory systems than the yeast SLN1-HOG1 MAPK cascade.  相似文献   

12.
13.
14.
The cytochrome c gene (cycA) of the filamentous fungus Aspergillus nidulans has been isolated and sequenced. The gene is present in a single copy per haploid genome and encodes a polypeptide of 112 amino acid residues. The nucleotide sequence of the A. nidulans cycA gene shows 87% identity to the DNA sequence of the Neurospora crassa cytochrome c gene, and approximately 72% identity to the sequence of the Saccharomyces cerevisiae iso-1-cytochrome c gene (CYC1). The S. cerevisiae CYC1 gene was used as a heterologous probe to isolate the homologous gene in A. nidulans. The A. nidulans cytochrome c sequence contains two small introns. One of these is highly conserved in terms of position, but the other has not been reported in any of the cytochrome c genes so far sequenced. Expression of the cycA gene is not affected by glucose repression, but has been shown to be induced approximatly tenfold in the presence of oxygen and three- to fourfold under heatshock conditions.  相似文献   

15.
Class III chitin synthases play important roles in tip growth and conidiation in many filamentous fungi. However, little is known about their functions in those processes. To address these issues, we characterized the deletion mutant of a class III chitin synthase-encoding gene of Aspergillus nidulans, chsB, and investigated ChsB localization in the hyphae and conidiophores. Multilayered cell walls and intrahyphal hyphae were observed in the hyphae of the chsB deletion mutant, and wavy septa were also occasionally observed. ChsB tagged with FLAG or enhanced green fluorescent protein (EGFP) localized mainly at the tips of germ tubes, hyphal tips, and forming septa during hyphal growth. EGFP-ChsB predominantly localized at polarized growth sites and between vesicles and metulae, between metulae and phialides, and between phalides and conidia in asexual development. These results strongly suggest that ChsB functions in the formation of normal cell walls of hyphae, as well as in conidiophore and conidia development in A. nidulans.Chitin, a polymer of β-1,4-linked N-acetylglucosmine, is one of the major structural components of the fungal cell wall. Its metabolism, including synthesis, degradation, assembly, and cross-linking to other cell wall components, is thought to be very important for many fungi (5, 22, 24, 36, 45). Fungal chitin synthases have been classified into seven groups, classes I to VII, depending on the structures of their conserved regions (6). The genes encoding the synthases belonging to classes III, V, VI, and VII are only found in fungi with high chitin contents in their cell walls. We have identified six chitin synthase genes from Aspergillus nidulans and designated them chsA, chsB, chsC, chsD, csmA, and csmB; these gene products belong to classes II, III, I, IV, V, and VI, respectively (9, 13, 30, 31, 44, 52). The chsB deletion mutant grew very slowly and formed small colonies with highly branched hyphae, suggesting its important role in hyphal tip growth (3, 52). Repression of chsB expression in the deletion mutant of chsA, chsC, or chsD exaggerated the defects in the formation of aerial hyphae, the production of cell mass, or the growth under high-osmolarity conditions, respectively, compared to each single mutant. These results indicate that chsB functions at various stages of development (15, 16).The deletion of class III chitin synthase-encoding genes leads to severe defects in most of the filamentous fungi thus far investigated. However, their detailed functions are currently unknown. In Neurospora crassa, inactivation of the gene encoding Chs-1, a class III chitin synthase with 63% identity to A. nidulans ChsB, leads to slow growth, aberrant hyphal morphology, and a decrease in chitin synthase activity. The mutant of chs-1 became sensitive to Nikkomycin Z, a chitin synthase inhibitor (53). In Aspergillus fumigatus, two genes encoding class III chitin synthases, chsC and chsG, have been identified. Their gene products showed 66 and 89% identity, respectively, to A. nidulans ChsB. The chsG deletion mutant showed slow growth and defects in conidiation, and its hyphae were highly branched. chsC deletion did not cause any phenotypic change. The chsC chsG double deletion mutant showed almost the same phenotype as the chsG single deletion mutant (28). Class III chitin synthases have been reported to be involved in the virulence of some pathogens. Deletion of Bcchs3a in the phytopathogenic fungus Botrytis cinerea and double deletion of WdCHS3 and class I chitin synthase WdCHS2 in the human pathogen Wangiella dermatitidis both caused a reduction of virulence (40, 48). On the other hand, the deletion mutant of a class III chitin synthase-encoding gene, CgChsIII, of the maize pathogen Colletotrichum graminicola did not exhibit the significant phenotypic difference from the wild-type strain (50). Deletion of a gene, chs1, encoding a class III chitin synthase of the maize pathogenic dimorphic fungi Ustilago maydis caused minor defects in the growth of haploid yeastlike cells and conjugation tube formation (49). These results indicate that the functions of class III chitin synthases has evolutionally diverged.In the present study, we characterized the cytological defects of the A. nidulans chsB deletion mutant and investigated the localization of ChsB using FLAG- or enhanced green fluorescent protein (EGFP)-tagged ChsB. We reveal that the deletion mutant formed hyphae with aberrant cell wall structures and that ChsB tagged with EGFP primarily localized at polarized growth sites during germination, hyphal growth, septation, and conidiation. These findings suggest that ChsB functions at the polarized growth sites and forming septa during the hyphal growth and conidia development.  相似文献   

16.
Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.  相似文献   

17.
Summary Conidiation inAspergillus nidulans can be divided conveniently into five morphologically distinct stages. These are development of the conidiophore stalk, formation of the conidiophore vesicle, differentiation of metulae, differentiation of phialides, and production of conidia. The results presented here demonstrate that freeze-substitution fixation greatly facilitates the study of most of these stages. Ultrastructural features of vesicles, mitochondria, microtubules and nuclei were more easily resolved in freeze-substituted samples than in chemically fixed samples. In addition, certain structures and events simply not visible in chemically fixed samples were found routinely in freeze-substituted samples. Examples include Golgi bodies and multivesicular bodies and mitotic divisions associated with various stages of conidiation.Abbreviations C conidium - CI conidium initial - CV conidiophore vesicle - FC foot cell - GB Golgi body - M mitochondrion - ME metula - MT microtubule - MVB multivesicular body - N nucleus - PM plasma membrane - P phialide - RER rough endoplasmic reticulum - S spindle apparatus - SPB spindle pole body - V vacuole - W fungal wall - WB Woronin body  相似文献   

18.

Background

Septins, novel cytoskeletal proteins, form rings at the bases of emerging round buds in yeasts and at the bases of emerging elongated hyphal initials in filamentous fungi.

Methodology/Principal Findings

When introduced into the yeast Saccharomyces cerevisiae, the septin AspC from the filamentous fungus Aspergillus nidulans induced highly elongated atypical pseudohyphae and spore-producing structures similar to those of hyphal fungi. AspC induced atypical pseudohyphae when S. cerevisiae pseudohyphal or haploid invasive genes were deleted, but not when the CDC10 septin gene was deleted. AspC also induced atypical pseudohyphae when S. cerevisiae genes encoding Cdc12-interacting proteins Bem4, Cla4, Gic1 and Gic2 were deleted, but not when BNI1, a Cdc12-interacting formin gene, was deleted. AspC localized to bud and pseudohypha necks, while its S. cerevisiae ortholog, Cdc12, localized only to bud necks.

Conclusions/Significance

Our results suggest that AspC competes with Cdc12 for incorporation into the yeast septin scaffold and once there alters cell shape by altering interactions with the formin Bni1. That introduction of the A. nidulans septin AspC into S. cerevisiae induces a shift from formation of buds to formation of atypical pseudohyphae suggests that septins play an important role in the morphological plasticity of fungi.  相似文献   

19.
20.
Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号