首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鞭毛介导的运动性与细菌生物膜的相互关系   总被引:3,自引:0,他引:3  
丁莉莎  王瑶 《微生物学报》2009,49(4):417-422
摘要:由于运动缺陷型细菌形成生物膜的能力会下降,长期以来细菌的运动性都被认为与生物膜的形成呈正相关,但这一理论现在证明还有待商榷,而且运动性不是影响膜形成的绝对因素。本文详细介绍了细菌的生物膜和运动性,并重新定义了两者的相互关系。  相似文献   

2.
To understand the nature and function of bacterial biofilm and the process of its formation, we have performed systematic screening of a complete set of Escherichia coli genes/open reading frames (ORFs) to identify those that affect biofilm development upon over-expression. In contrast to the biofilm of strain AG1 used as a control, some of the genes/ORFs when over-expressed led to the formation of an abnormal biofilm such as thin, mat-like, filamentous or one easily detaching from various surfaces. Disruptants of selected genes were constructed in order to clarify their roles in the different stages of biofilm formation. Our results suggest that diverse metabolic pathways contribute to the development of biofilm.  相似文献   

3.
Our understanding of Escherichia coli biofilm formation in vitro is based on studies of laboratory K-12 strains grown in standard media. However, pathogenic E. coli isolates differ substantially in their genetic repertoire from E. coli K-12 and are subject to heterogeneous environmental conditions. In this study, in vitro biofilm formation of 331 nondomesticated E. coli strains isolated from healthy (n = 105) and diarrhea-afflicted children (n = 68), bacteremia patients (n = 90), and male patients with urinary tract infections (n = 68) was monitored using a variety of growth conditions and compared to in vitro biofilm formation of prototypic pathogenic and laboratory strains. Our results revealed remarkable variation among the capacities of diverse E. coli isolates to form biofilms in vitro. Notably, we could not identify an association of increased biofilm formation in vitro with a specific strain collection that represented pathogenic E. coli strains. Instead, analysis of biofilm data revealed a significant dependence on growth medium composition (P < 0.05). Poor correlation between biofilm formation in the various media suggests that diverse E. coli isolates respond very differently to changing environmental conditions. The data demonstrate that prevalence and expression of three factors known to strongly promote biofilm formation in E. coli K-12 (F-like conjugative pili, aggregative adherence fimbriae, and curli) cannot adequately account for the increased biofilm formation of nondomesticated E. coli isolates in vitro. This study highlights the complexity of genetic and environmental effectors of the biofilm phenotype within the species E. coli.  相似文献   

4.
Vibrio cholerae , the causative agent of the devastating diarrheal disease cholera, can form biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these signals, norspermidine, is a polyamine that enhances biofilm formation via the NspS/MbaA signaling system. In this work, we have investigated the role of the polyamine spermidine in regulating biofilm formation in V. cholerae . We show that spermidine import requires PotD1, an ortholog of the periplasmic substrate-binding protein of the spermidine transport system in Escherichia coli . We also show that deletion of the potD1 gene results in a significant increase in biofilm formation. We hypothesize that spermidine imported into the cell hinders biofilm formation. Exogenous spermidine further reduces biofilm formation in a PotD1-independent, but NspS/MbaA-dependent, manner. Our results suggest that polyamines affect biofilm formation in V. cholerae via multiple pathways involving both transport and signaling networks.  相似文献   

5.
Biofilm formation and dispersal and the transmission of human pathogens   总被引:18,自引:0,他引:18  
Several pathogenic bacterial species that are found in the environment can form complex multicellular structures on surfaces known as biofilms. Pseudomonas aeruginosa, Vibrio cholerae and certain species of nontuberculous mycobacteria are examples of human pathogens that form biofilms in natural aquatic environments. We suggest that the dynamics of biofilm formation facilitates the transmission of pathogens by providing a stable protective environment and acting as a nidus for the dissemination of large numbers of microorganisms; both as detached biofilm clumps and by the fluid-driven dispersal of biofilm clusters along surfaces. We also suggest that emerging evidence indicates that biofilm formation conveys a selective advantage to certain pathogens by increasing their ability to persist under diverse environmental conditions.  相似文献   

6.
Biofilms contribute to hygiene problems in the food industry and in the medical field. Biofilms are diverse and due to the development of special phenotypes, biofilm organisms are not as susceptible to biocides as planktonic microorganisms. Biofilms may be prevented by regular disinfection. Since the attachment of microbes to surfaces and the development of biofilm phenotypes is a very fast process, it is, however, almost impossible, to prevent biofilm formation completely. The removal and killing of established biofilms requires harsh treatments, mostly using oxidising biocides. Depending on the nature of the biofilms, different biocides may be useful and the best biocide for a specific biofilm still has to be determined under practical conditions. Another approach is the prevention of biofilm formation by selection of materials that do not support the attachment of microorganisms. Some materials like glass and stainless steel show less biofilm formation than others. The ranking of materials, however, depends on the conditions, under which they are tested. A novel approach is biofilm inhibition by supplementation of systems with nutrients, to inhibit attachment. First results on inhibition of biofouling in reversed osmosis systems are presented.  相似文献   

7.
Quorum sensing in streptococcal biofilm formation   总被引:10,自引:0,他引:10  
Bacteria in their natural ecosystems preferentially grow as polysaccharide-encased biofilms attached to surfaces. Although quorum-sensing (QS) systems directing the 'biofilm phenotype' have been extensively described in Gram-negative bacteria, there is little understanding of the importance of these systems in Gram-positive biofilm formation. Streptococci are a diverse group of Gram-positive bacteria that colonize epithelial, mucosal and tooth surfaces of humans. In several streptococci, competence-stimulating peptide (CSP)-mediated QS has been connected with competence development for genetic transformation. Recent work, especially with bacteria that inhabit the biofilm of dental plaque, has linked CSP stimuli to other cell-density adaptations, such as biofilm formation.  相似文献   

8.
The Bacillus subtilis biofilm matrix harbours a functionally important amyloid fibre network composed of the protein TasA. Previous studies showed that the protein TapA (formerly YqxM) plays roles in TasA fibre formation and disassembly. In this issue, Romero et al., 2011 show that TapA is a component of the fibre and links it to the peptidoglycan. Therefore, TapA directs TasA fibre formation, links it to the cell wall and, most likely, participates in fibre dispersal. These results provide important insights into the control of biofilm formation in B. subtilis and, potentially, the regulation of amyloid fibre formation in diverse species.  相似文献   

9.
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.  相似文献   

10.
Extracellular polysaccharide (EPS) is produced by diverse bacterial pathogens and fulfills assorted roles, including providing a structural matrix for biofilm formation and more specific functions in virulence, such as protection against immune defenses. We report here the first investigation of some of the genes important for biofilm formation in Photorhabdus luminescens and demonstrate the key role of the phosphomannose isomerase gene, manA, in the structure of functional EPS. Phenotypic analyses of a manA-deficient mutant showed the importance of EPS in motility, insect virulence, and biofilm formation on abiotic surfaces as well as the requirement of this gene for the use of mannose as the sole carbon source. Conversely, this defect had no apparent impact on symbiosis with the heterorhabditid nematode vector. A more detailed analysis of biofilm formation revealed that the manA mutant was able to attach to surfaces with the same efficiency as that of the wild-type strain but could not develop the more extended biofilm matrix structures. A compositional analysis of P. luminescens EPS reveals how the manA mutation has a major effect on the formation of a complete, branched EPS.  相似文献   

11.
12.
The marine bacterium Pseudoalteromonas tunicata produces an antibacterial and autolytic protein, AlpP, which causes death of a subpopulation of cells during biofilm formation and mediates differentiation, dispersal, and phenotypic variation among dispersal cells. The AlpP homologue (LodA) in the marine bacterium Marinomonas mediterranea was recently identified as a lysine oxidase which mediates cell death through the production of hydrogen peroxide. Here we show that AlpP in P. tunicata also acts as a lysine oxidase and that the hydrogen peroxide generated is responsible for cell death within microcolonies during biofilm development in both M. mediterranea and P. tunicata. LodA-mediated biofilm cell death is shown to be linked to the generation of phenotypic variation in growth and biofilm formation among M. mediterranea biofilm dispersal cells. Moreover, AlpP homologues also occur in several other gram-negative bacteria from diverse environments. Our results show that subpopulations of cells in microcolonies also die during biofilm formation in two of these organisms, Chromobacterium violaceum and Caulobacter crescentus. In all organisms, hydrogen peroxide was implicated in biofilm cell death, because it could be detected at the same time as the killing occurred, and the addition of catalase significantly reduced biofilm killing. In C. violaceum the AlpP-homologue was clearly linked to biofilm cell death events since an isogenic mutant (CVMUR1) does not undergo biofilm cell death. We propose that biofilm killing through hydrogen peroxide can be linked to AlpP homologue activity and plays an important role in dispersal and colonization across a range of gram-negative bacteria.  相似文献   

13.
14.
The hair‐like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo‐proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm‐promoting function in type IV pili‐producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non‐piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well‐studied type IV pili‐producing heterotrophic bacteria.  相似文献   

15.
Assembly of bacterial flagella is developmentally important during both planktonic cell growth and biofilm formation. Flagellar biogenesis is complex, requiring coordinated expression of over 40 genes, and normally commences during the log-to-stationary transition phase. We describe here a novel membrane-localized regulator, MorA, that controls the timing of flagellar development and affects motility, chemotaxis, and biofilm formation in Pseudomonas putida. MorA is conserved among diverse Pseudomonas species, and homologues are present in all Pseudomonas genomes sequenced thus far. In P. putida, the absence of MorA derepresses flagellar development, which leads to constitutive formation of flagella in the mutant cells in all growth phases. In Pseudomonas aeruginosa, the absence of MorA led to a reduction in biofilm formation. However, unlike the motility of P. putida, the motility of the P. aeruginosa mutants was unaffected. Our data illustrate a novel developmentally regulated sensory and signaling pathway for several properties required for virulence and ecological fitness of Pseudomonas species.  相似文献   

16.
The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.  相似文献   

17.
The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.  相似文献   

18.
Clinical studies indicate relationships between dental plaque, a naturally formed biofilm, and oral diseases. The crucial role of nonmicrobial biofilm constituents in maintaining biofilm structure and biofilm-specific attributes, such as resistance to shear and viscoelasticity, is increasingly recognized. Concurrent analyses of the diverse nonmicrobial biofilm components for multiparameter assessments formed the focus of this investigation. Comparable numbers of Actinomyces viscosus, Streptococcus sanguinis, Streptococcus mutans, Neisseria subflava, and Actinobacillus actinomycetemcomitans cells were seeded into multiple wells of 96-well polystyrene plates for biofilm formation. Quantitative fluorescence and confocal laser scanning microscopy (CLSM) examined the influences of dietary sugars, incubation conditions, ingredients in oral hygiene formulations, and antibiotics on biofilm components. Biofilm extracellular polymeric substances (EPS) were examined with an optimized mixture of fluorescent lectins, with biofilm proteins, lipids, and nucleic acids detected with specific fluorescent stains. Anaerobic incubation of biofilms resulted in significantly more biofilm EPS and extractable carbohydrates than those formed under aerobic conditions (P < 0.05). Sucrose significantly enhanced biofilm EPS in comparison to fructose, galactose, glucose, and lactose (P < 0.05). CLSM demonstrated thicker biofilms under sucrose-replete conditions, along with significant increases in biofilm EPS, proteins, lipids, and nucleic acids, than under conditions of sucrose deficiency (P < 0.05). Agents in oral hygiene formulations (chlorhexidine, ethanol, and sodium lauryl sulfate), a mucolytic agent (N-acetyl-L-cysteine), and antibiotics with different modes of action (amoxicillin, doxycycline, erythromycin, metronidazole, and vancomycin) inhibited biofilm components (P < 0.05). Multiparameter analysis indicated a dose-dependent inhibition of biofilm EPS and protein by chlorhexidine and sodium lauryl sulfate, along with distinctive inhibitory patterns for subinhibitory concentrations of antibiotics. Collectively, these results highlight multiparameter assessments as a broad platform for simultaneous assessment of diverse biofilm components.  相似文献   

19.
The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.  相似文献   

20.
CsgA是淀粉样纤维蛋白(Curli)重要组成部分,用同源重组方法对魏氏柠檬酸杆菌中该蛋白的编码基因csgA进行了敲除,通过生物信息学分析和生长曲线、生物膜、刚果红吸附等实验,发现csgA基因敲除后不影响魏氏柠檬酸杆菌浮游菌的生长,但敲除菌株ΔcsgA的生物膜无法形成,同时,ΔcsgA对羧苄青霉素、庆大霉素、头孢噻肟等的耐药性增强,并且csgA基因也是Ca^2+增强魏氏柠檬酸杆菌生物膜形成的作用位点之一。本研究的结果揭示了csgA基因在魏氏柠檬酸杆菌中具有重要的功能,也为该菌株生物膜的防控提供靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号